MEF2A/SNHG16/miR-425-5p/NOTCH2轴通过抑制饥饿膀胱肿瘤微环境中的铁突变,诱导吉西他滨耐药。

IF 4.4 2区 生物学 Q2 CELL BIOLOGY
{"title":"MEF2A/SNHG16/miR-425-5p/NOTCH2轴通过抑制饥饿膀胱肿瘤微环境中的铁突变,诱导吉西他滨耐药。","authors":"","doi":"10.1016/j.cellsig.2024.111337","DOIUrl":null,"url":null,"abstract":"<div><p>Gemcitabine resistance is one of the leading causes of bladder cancer (BCa) recurrence and progression. The dysregulation of ferroptosis is involved in this process; however, the underlying mechanisms remain unclear. In the current study, we found a prominent increase in long non-coding RNA (lncRNA) small nucleolar RNA host gene 16 (SNHG16) in tumor samples, which was related to advanced tumor grade and poor prognosis. SNHG16 is overexpressed in the starving tumor microenvironment (STME) and induces gemcitabine resistance by inhibiting ferroptosis in BCa. SNHG16 knockdown promotes ferroptosis and increases chemosensitivity to gemcitabine. Mechanistically, the transcription factor MEF2A was markedly upregulated in the STME, facilitating SNHG16 expression. SNHG16 acts as a competing endogenous RNA that sponges miR-425-5p and promotes NOTCH2 expression. SNHG16/miR-425-5p/NOTCH2 is demonstrated, for the first time, to suppress ferroptosis by inducing SLC7A11 and GPX4 expression in vitro and in vivo. Upregulation of miR-425-5p reverses NOTCH2-mediated inhibition of ferroptosis, thereby mitigating gemcitabine resistance. In conclusion, these findings reveal that the STME-activated MEF2A/SNHG16/miR-425-5p/NOTCH2 axis induces gemcitabine resistance by inhibiting ferroptosis and implicate SNHG16 as a potential therapeutic target for chemoresistance.</p></div>","PeriodicalId":9902,"journal":{"name":"Cellular signalling","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The MEF2A/SNHG16/miR-425-5p/NOTCH2 axis induces gemcitabine resistance by inhibiting ferroptosis in the starving bladder tumor microenvironment\",\"authors\":\"\",\"doi\":\"10.1016/j.cellsig.2024.111337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Gemcitabine resistance is one of the leading causes of bladder cancer (BCa) recurrence and progression. The dysregulation of ferroptosis is involved in this process; however, the underlying mechanisms remain unclear. In the current study, we found a prominent increase in long non-coding RNA (lncRNA) small nucleolar RNA host gene 16 (SNHG16) in tumor samples, which was related to advanced tumor grade and poor prognosis. SNHG16 is overexpressed in the starving tumor microenvironment (STME) and induces gemcitabine resistance by inhibiting ferroptosis in BCa. SNHG16 knockdown promotes ferroptosis and increases chemosensitivity to gemcitabine. Mechanistically, the transcription factor MEF2A was markedly upregulated in the STME, facilitating SNHG16 expression. SNHG16 acts as a competing endogenous RNA that sponges miR-425-5p and promotes NOTCH2 expression. SNHG16/miR-425-5p/NOTCH2 is demonstrated, for the first time, to suppress ferroptosis by inducing SLC7A11 and GPX4 expression in vitro and in vivo. Upregulation of miR-425-5p reverses NOTCH2-mediated inhibition of ferroptosis, thereby mitigating gemcitabine resistance. In conclusion, these findings reveal that the STME-activated MEF2A/SNHG16/miR-425-5p/NOTCH2 axis induces gemcitabine resistance by inhibiting ferroptosis and implicate SNHG16 as a potential therapeutic target for chemoresistance.</p></div>\",\"PeriodicalId\":9902,\"journal\":{\"name\":\"Cellular signalling\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular signalling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S089865682400305X\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular signalling","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S089865682400305X","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

吉西他滨耐药是膀胱癌(BCa)复发和进展的主要原因之一。这一过程涉及铁蛋白沉积失调,但其潜在机制仍不清楚。在目前的研究中,我们发现肿瘤样本中长非编码 RNA(lncRNA)小核仁 RNA 宿主基因 16(SNHG16)显著增加,这与肿瘤晚期分级和预后不良有关。SNHG16在饥饿肿瘤微环境(STME)中过表达,并通过抑制BCa中的铁变态反应诱导吉西他滨耐药。敲除 SNHG16 可促进铁突变,增加对吉西他滨的化疗敏感性。从机制上讲,转录因子MEF2A在STME中明显上调,促进了SNHG16的表达。SNHG16是一种竞争性内源性RNA,它能疏导miR-425-5p并促进NOTCH2的表达。SNHG16/miR-425-5p/NOTCH2 通过诱导体外和体内 SLC7A11 和 GPX4 的表达,首次被证实能抑制铁变态反应。上调 miR-425-5p 可逆转 NOTCH2 介导的铁凋亡抑制,从而减轻吉西他滨耐药性。总之,这些发现揭示了 STME 激活的 MEF2A/SNHG16/miR-425-5p/NOTCH2 轴通过抑制铁突变诱导吉西他滨耐药,并将 SNHG16 作为化疗耐药的潜在治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The MEF2A/SNHG16/miR-425-5p/NOTCH2 axis induces gemcitabine resistance by inhibiting ferroptosis in the starving bladder tumor microenvironment

Gemcitabine resistance is one of the leading causes of bladder cancer (BCa) recurrence and progression. The dysregulation of ferroptosis is involved in this process; however, the underlying mechanisms remain unclear. In the current study, we found a prominent increase in long non-coding RNA (lncRNA) small nucleolar RNA host gene 16 (SNHG16) in tumor samples, which was related to advanced tumor grade and poor prognosis. SNHG16 is overexpressed in the starving tumor microenvironment (STME) and induces gemcitabine resistance by inhibiting ferroptosis in BCa. SNHG16 knockdown promotes ferroptosis and increases chemosensitivity to gemcitabine. Mechanistically, the transcription factor MEF2A was markedly upregulated in the STME, facilitating SNHG16 expression. SNHG16 acts as a competing endogenous RNA that sponges miR-425-5p and promotes NOTCH2 expression. SNHG16/miR-425-5p/NOTCH2 is demonstrated, for the first time, to suppress ferroptosis by inducing SLC7A11 and GPX4 expression in vitro and in vivo. Upregulation of miR-425-5p reverses NOTCH2-mediated inhibition of ferroptosis, thereby mitigating gemcitabine resistance. In conclusion, these findings reveal that the STME-activated MEF2A/SNHG16/miR-425-5p/NOTCH2 axis induces gemcitabine resistance by inhibiting ferroptosis and implicate SNHG16 as a potential therapeutic target for chemoresistance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cellular signalling
Cellular signalling 生物-细胞生物学
CiteScore
8.40
自引率
0.00%
发文量
250
审稿时长
27 days
期刊介绍: Cellular Signalling publishes original research describing fundamental and clinical findings on the mechanisms, actions and structural components of cellular signalling systems in vitro and in vivo. Cellular Signalling aims at full length research papers defining signalling systems ranging from microorganisms to cells, tissues and higher organisms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信