Tatiane Vilaca, Marian Schini, Li-Yung Lui, Susan K Ewing, Austin R Thompson, Eric Vittinghoff, Douglas C Bauer, Richard Eastell, Dennis M Black, Mary L Bouxsein
{"title":"骨质疏松症临床试验中 12、18 和 24 个月后测量的全髋骨矿物质密度的治疗相关变化与骨折风险降低之间的关系:FNIH-ASBMR-SABRE 项目。","authors":"Tatiane Vilaca, Marian Schini, Li-Yung Lui, Susan K Ewing, Austin R Thompson, Eric Vittinghoff, Douglas C Bauer, Richard Eastell, Dennis M Black, Mary L Bouxsein","doi":"10.1093/jbmr/zjae126","DOIUrl":null,"url":null,"abstract":"<p><p>There is a strong association between total hip bone mineral density (THBMD) changes after 24 mo of treatment and reduced fracture risk. We examined whether changes in THBMD after 12 and 18 mo of treatment are also associated with fracture risk reduction. We used individual patient data (n = 122 235 participants) from 22 randomized, placebo-controlled, double-blind trials of osteoporosis medications. We calculated the difference in mean percent change in THBMD (active-placebo) at 12, 18, and 24 mo using data available for each trial. We determined the treatment-related fracture reductions for the entire follow-up period, using logistic regression for radiologic vertebral fractures and Cox regression for hip, non-vertebral, \"all\" (combination of non-vertebral, clinical vertebral, and radiologic vertebral) fractures and all clinical fractures (combination of non-vertebral and clinical vertebral). We performed meta-regression to estimate the study-level association (r2 and 95% confidence interval) between treatment-related differences in THBMD changes for each BMD measurement interval and fracture risk reduction. The meta-regression revealed that for vertebral fractures, the r2 (95% confidence interval) was 0.59 (0.19, 0.75), 0.69 (0.32, 0.82), and 0.73 (0.33, 0.84) for 12, 18, and 24 mo, respectively. Similar patterns were observed for hip: r2 = 0.27 (0.00, 0.54), 0.39 (0.02, 0.63), and 0.41 (0.02, 0.65); non-vertebral: r2 = 0.27 (0.01, 0.52), 0.49 (0.10, 0.69), and 0.53 (0.11, 0.72); all fractures: r2 = 0.44 (0.10, 0.64), 0.63 (0.24, 0.77), and 0.66 (0.25, 0.80); and all clinical fractures: r2 = 0.46 (0.11, 0.65), 0.64 (0.26, 0.78), and 0.71 (0.32, 0.83), for 12-, 18-, and 24-mo changes in THBMD, respectively. These findings demonstrate that treatment-related THBMD changes at 12, 18, and 24 mo are associated with fracture risk reductions across trials. We conclude that BMD measurement intervals as short as 12 mo could be used to assess fracture efficacy, but the association is stronger with longer BMD measurement intervals.</p>","PeriodicalId":185,"journal":{"name":"Journal of Bone and Mineral Research","volume":" ","pages":"1434-1442"},"PeriodicalIF":5.1000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11425700/pdf/","citationCount":"0","resultStr":"{\"title\":\"The relationship between treatment-related changes in total hip BMD measured after 12, 18, and 24 mo and fracture risk reduction in osteoporosis clinical trials: the FNIH-ASBMR-SABRE project.\",\"authors\":\"Tatiane Vilaca, Marian Schini, Li-Yung Lui, Susan K Ewing, Austin R Thompson, Eric Vittinghoff, Douglas C Bauer, Richard Eastell, Dennis M Black, Mary L Bouxsein\",\"doi\":\"10.1093/jbmr/zjae126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>There is a strong association between total hip bone mineral density (THBMD) changes after 24 mo of treatment and reduced fracture risk. We examined whether changes in THBMD after 12 and 18 mo of treatment are also associated with fracture risk reduction. We used individual patient data (n = 122 235 participants) from 22 randomized, placebo-controlled, double-blind trials of osteoporosis medications. We calculated the difference in mean percent change in THBMD (active-placebo) at 12, 18, and 24 mo using data available for each trial. We determined the treatment-related fracture reductions for the entire follow-up period, using logistic regression for radiologic vertebral fractures and Cox regression for hip, non-vertebral, \\\"all\\\" (combination of non-vertebral, clinical vertebral, and radiologic vertebral) fractures and all clinical fractures (combination of non-vertebral and clinical vertebral). We performed meta-regression to estimate the study-level association (r2 and 95% confidence interval) between treatment-related differences in THBMD changes for each BMD measurement interval and fracture risk reduction. The meta-regression revealed that for vertebral fractures, the r2 (95% confidence interval) was 0.59 (0.19, 0.75), 0.69 (0.32, 0.82), and 0.73 (0.33, 0.84) for 12, 18, and 24 mo, respectively. Similar patterns were observed for hip: r2 = 0.27 (0.00, 0.54), 0.39 (0.02, 0.63), and 0.41 (0.02, 0.65); non-vertebral: r2 = 0.27 (0.01, 0.52), 0.49 (0.10, 0.69), and 0.53 (0.11, 0.72); all fractures: r2 = 0.44 (0.10, 0.64), 0.63 (0.24, 0.77), and 0.66 (0.25, 0.80); and all clinical fractures: r2 = 0.46 (0.11, 0.65), 0.64 (0.26, 0.78), and 0.71 (0.32, 0.83), for 12-, 18-, and 24-mo changes in THBMD, respectively. These findings demonstrate that treatment-related THBMD changes at 12, 18, and 24 mo are associated with fracture risk reductions across trials. We conclude that BMD measurement intervals as short as 12 mo could be used to assess fracture efficacy, but the association is stronger with longer BMD measurement intervals.</p>\",\"PeriodicalId\":185,\"journal\":{\"name\":\"Journal of Bone and Mineral Research\",\"volume\":\" \",\"pages\":\"1434-1442\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11425700/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bone and Mineral Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/jbmr/zjae126\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bone and Mineral Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jbmr/zjae126","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
The relationship between treatment-related changes in total hip BMD measured after 12, 18, and 24 mo and fracture risk reduction in osteoporosis clinical trials: the FNIH-ASBMR-SABRE project.
There is a strong association between total hip bone mineral density (THBMD) changes after 24 mo of treatment and reduced fracture risk. We examined whether changes in THBMD after 12 and 18 mo of treatment are also associated with fracture risk reduction. We used individual patient data (n = 122 235 participants) from 22 randomized, placebo-controlled, double-blind trials of osteoporosis medications. We calculated the difference in mean percent change in THBMD (active-placebo) at 12, 18, and 24 mo using data available for each trial. We determined the treatment-related fracture reductions for the entire follow-up period, using logistic regression for radiologic vertebral fractures and Cox regression for hip, non-vertebral, "all" (combination of non-vertebral, clinical vertebral, and radiologic vertebral) fractures and all clinical fractures (combination of non-vertebral and clinical vertebral). We performed meta-regression to estimate the study-level association (r2 and 95% confidence interval) between treatment-related differences in THBMD changes for each BMD measurement interval and fracture risk reduction. The meta-regression revealed that for vertebral fractures, the r2 (95% confidence interval) was 0.59 (0.19, 0.75), 0.69 (0.32, 0.82), and 0.73 (0.33, 0.84) for 12, 18, and 24 mo, respectively. Similar patterns were observed for hip: r2 = 0.27 (0.00, 0.54), 0.39 (0.02, 0.63), and 0.41 (0.02, 0.65); non-vertebral: r2 = 0.27 (0.01, 0.52), 0.49 (0.10, 0.69), and 0.53 (0.11, 0.72); all fractures: r2 = 0.44 (0.10, 0.64), 0.63 (0.24, 0.77), and 0.66 (0.25, 0.80); and all clinical fractures: r2 = 0.46 (0.11, 0.65), 0.64 (0.26, 0.78), and 0.71 (0.32, 0.83), for 12-, 18-, and 24-mo changes in THBMD, respectively. These findings demonstrate that treatment-related THBMD changes at 12, 18, and 24 mo are associated with fracture risk reductions across trials. We conclude that BMD measurement intervals as short as 12 mo could be used to assess fracture efficacy, but the association is stronger with longer BMD measurement intervals.
期刊介绍:
The Journal of Bone and Mineral Research (JBMR) publishes highly impactful original manuscripts, reviews, and special articles on basic, translational and clinical investigations relevant to the musculoskeletal system and mineral metabolism. Specifically, the journal is interested in original research on the biology and physiology of skeletal tissues, interdisciplinary research spanning the musculoskeletal and other systems, including but not limited to immunology, hematology, energy metabolism, cancer biology, and neurology, and systems biology topics using large scale “-omics” approaches. The journal welcomes clinical research on the pathophysiology, treatment and prevention of osteoporosis and fractures, as well as sarcopenia, disorders of bone and mineral metabolism, and rare or genetically determined bone diseases.