三维准线性抛物方程的指数形式两级隐式高阶紧凑方案

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Kajal Mittal, Rajendra K. Ray
{"title":"三维准线性抛物方程的指数形式两级隐式高阶紧凑方案","authors":"Kajal Mittal,&nbsp;Rajendra K. Ray","doi":"10.1016/j.amc.2024.128984","DOIUrl":null,"url":null,"abstract":"<div><p>We discuss a new high accuracy compact exponential scheme of order four in space and two in time to solve the three-dimensional quasi-linear parabolic partial differential equations. The derived half-step discretization based scheme is implicit in nature and demands only two levels for computation. The generalization of the proposed exponential scheme for the system of the quasi-linear parabolic PDEs is also represented. We generate unconditionally stable alternating direction implicit scheme for the linear parabolic equation in general form. The accuracy and the theoretical results of the proposed scheme are verified for high Reynolds number by several numerical problems like linear and non-linear convection-diffusion equation, coupled Burgers' equations, Navier-Stokes equations, quasi-linear parabolic equation, etc.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two-level implicit high-order compact scheme in exponential form for 3D quasi-linear parabolic equations\",\"authors\":\"Kajal Mittal,&nbsp;Rajendra K. Ray\",\"doi\":\"10.1016/j.amc.2024.128984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We discuss a new high accuracy compact exponential scheme of order four in space and two in time to solve the three-dimensional quasi-linear parabolic partial differential equations. The derived half-step discretization based scheme is implicit in nature and demands only two levels for computation. The generalization of the proposed exponential scheme for the system of the quasi-linear parabolic PDEs is also represented. We generate unconditionally stable alternating direction implicit scheme for the linear parabolic equation in general form. The accuracy and the theoretical results of the proposed scheme are verified for high Reynolds number by several numerical problems like linear and non-linear convection-diffusion equation, coupled Burgers' equations, Navier-Stokes equations, quasi-linear parabolic equation, etc.</p></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0096300324004454\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300324004454","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

我们讨论了一种新的空间四阶、时间两阶的高精度紧凑指数方案,用于求解三维准线性抛物线偏微分方程。推导出的基于半步离散化的方案本质上是隐式的,只需要两级计算。此外,还介绍了针对准线性抛物型偏微分方程系统提出的指数方案的广义化。我们为一般形式的线性抛物方程生成了无条件稳定的交替方向隐式方案。通过线性和非线性对流扩散方程、耦合布尔格斯方程、纳维-斯托克斯方程、准线性抛物方程等几个数值问题,验证了所提方案在高雷诺数下的准确性和理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two-level implicit high-order compact scheme in exponential form for 3D quasi-linear parabolic equations

We discuss a new high accuracy compact exponential scheme of order four in space and two in time to solve the three-dimensional quasi-linear parabolic partial differential equations. The derived half-step discretization based scheme is implicit in nature and demands only two levels for computation. The generalization of the proposed exponential scheme for the system of the quasi-linear parabolic PDEs is also represented. We generate unconditionally stable alternating direction implicit scheme for the linear parabolic equation in general form. The accuracy and the theoretical results of the proposed scheme are verified for high Reynolds number by several numerical problems like linear and non-linear convection-diffusion equation, coupled Burgers' equations, Navier-Stokes equations, quasi-linear parabolic equation, etc.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信