可积分卡马萨-霍尔姆型方程解的一些性质

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Mingxuan Zhu
{"title":"可积分卡马萨-霍尔姆型方程解的一些性质","authors":"Mingxuan Zhu","doi":"10.1016/j.aml.2024.109247","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study an integrable Camassa–Holm type equation. We proved that if the initial datum <span><math><mrow><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>⁄</mo><mo>≡</mo><mn>0</mn></mrow></math></span> is compactly supported in <span><math><mrow><mo>[</mo><mi>a</mi><mo>,</mo><mi>c</mi><mo>]</mo></mrow></math></span>; then the corresponding solution to the Camassa–Holm type equation has the following property: <span><span><span><math><mrow><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><mfenced><mrow><mtable><mtr><mtd><mn>0</mn><mo>,</mo></mtd><mtd><mi>x</mi><mo>&gt;</mo><mi>q</mi><mrow><mo>(</mo><mi>c</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mo>;</mo></mtd></mtr><mtr><mtd><mi>l</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><msup><mrow><mi>e</mi></mrow><mrow><mi>x</mi></mrow></msup><mo>,</mo></mtd><mtd><mi>x</mi><mo>&lt;</mo><mi>q</mi><mrow><mo>(</mo><mi>a</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mo>.</mo></mtd></mtr></mtable></mrow></mfenced></mrow></math></span></span></span>Furthermore, <span><math><mrow><mi>l</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>&lt;</mo><mn>0</mn></mrow></math></span> is a continuous non-vanishing function and strictly decreasing. Long time behavior for the support of momentum density is also studied.</p></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some properties of solutions to the integrable Camassa–Holm type equation\",\"authors\":\"Mingxuan Zhu\",\"doi\":\"10.1016/j.aml.2024.109247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we study an integrable Camassa–Holm type equation. We proved that if the initial datum <span><math><mrow><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>⁄</mo><mo>≡</mo><mn>0</mn></mrow></math></span> is compactly supported in <span><math><mrow><mo>[</mo><mi>a</mi><mo>,</mo><mi>c</mi><mo>]</mo></mrow></math></span>; then the corresponding solution to the Camassa–Holm type equation has the following property: <span><span><span><math><mrow><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><mfenced><mrow><mtable><mtr><mtd><mn>0</mn><mo>,</mo></mtd><mtd><mi>x</mi><mo>&gt;</mo><mi>q</mi><mrow><mo>(</mo><mi>c</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mo>;</mo></mtd></mtr><mtr><mtd><mi>l</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><msup><mrow><mi>e</mi></mrow><mrow><mi>x</mi></mrow></msup><mo>,</mo></mtd><mtd><mi>x</mi><mo>&lt;</mo><mi>q</mi><mrow><mo>(</mo><mi>a</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mo>.</mo></mtd></mtr></mtable></mrow></mfenced></mrow></math></span></span></span>Furthermore, <span><math><mrow><mi>l</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>&lt;</mo><mn>0</mn></mrow></math></span> is a continuous non-vanishing function and strictly decreasing. Long time behavior for the support of momentum density is also studied.</p></div>\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893965924002672\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965924002672","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了可积分的卡马萨-霍姆方程。我们证明,如果初始基准 u0⁄≡0 在 [a,c] 中紧凑支撑,那么卡马萨-霍姆方程的相应解具有以下性质:u(x,t)=0,x>q(c,t);l(t)ex,x<q(a,t)。此外,还研究了动量密度支持的长时间行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some properties of solutions to the integrable Camassa–Holm type equation

In this paper, we study an integrable Camassa–Holm type equation. We proved that if the initial datum u00 is compactly supported in [a,c]; then the corresponding solution to the Camassa–Holm type equation has the following property: u(x,t)=0,x>q(c,t);l(t)ex,x<q(a,t).Furthermore, l(t)<0 is a continuous non-vanishing function and strictly decreasing. Long time behavior for the support of momentum density is also studied.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信