{"title":"可积分卡马萨-霍尔姆型方程解的一些性质","authors":"Mingxuan Zhu","doi":"10.1016/j.aml.2024.109247","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study an integrable Camassa–Holm type equation. We proved that if the initial datum <span><math><mrow><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>⁄</mo><mo>≡</mo><mn>0</mn></mrow></math></span> is compactly supported in <span><math><mrow><mo>[</mo><mi>a</mi><mo>,</mo><mi>c</mi><mo>]</mo></mrow></math></span>; then the corresponding solution to the Camassa–Holm type equation has the following property: <span><span><span><math><mrow><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><mfenced><mrow><mtable><mtr><mtd><mn>0</mn><mo>,</mo></mtd><mtd><mi>x</mi><mo>></mo><mi>q</mi><mrow><mo>(</mo><mi>c</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mo>;</mo></mtd></mtr><mtr><mtd><mi>l</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><msup><mrow><mi>e</mi></mrow><mrow><mi>x</mi></mrow></msup><mo>,</mo></mtd><mtd><mi>x</mi><mo><</mo><mi>q</mi><mrow><mo>(</mo><mi>a</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mo>.</mo></mtd></mtr></mtable></mrow></mfenced></mrow></math></span></span></span>Furthermore, <span><math><mrow><mi>l</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo><</mo><mn>0</mn></mrow></math></span> is a continuous non-vanishing function and strictly decreasing. Long time behavior for the support of momentum density is also studied.</p></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some properties of solutions to the integrable Camassa–Holm type equation\",\"authors\":\"Mingxuan Zhu\",\"doi\":\"10.1016/j.aml.2024.109247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we study an integrable Camassa–Holm type equation. We proved that if the initial datum <span><math><mrow><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>⁄</mo><mo>≡</mo><mn>0</mn></mrow></math></span> is compactly supported in <span><math><mrow><mo>[</mo><mi>a</mi><mo>,</mo><mi>c</mi><mo>]</mo></mrow></math></span>; then the corresponding solution to the Camassa–Holm type equation has the following property: <span><span><span><math><mrow><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><mfenced><mrow><mtable><mtr><mtd><mn>0</mn><mo>,</mo></mtd><mtd><mi>x</mi><mo>></mo><mi>q</mi><mrow><mo>(</mo><mi>c</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mo>;</mo></mtd></mtr><mtr><mtd><mi>l</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><msup><mrow><mi>e</mi></mrow><mrow><mi>x</mi></mrow></msup><mo>,</mo></mtd><mtd><mi>x</mi><mo><</mo><mi>q</mi><mrow><mo>(</mo><mi>a</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mo>.</mo></mtd></mtr></mtable></mrow></mfenced></mrow></math></span></span></span>Furthermore, <span><math><mrow><mi>l</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo><</mo><mn>0</mn></mrow></math></span> is a continuous non-vanishing function and strictly decreasing. Long time behavior for the support of momentum density is also studied.</p></div>\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893965924002672\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965924002672","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Some properties of solutions to the integrable Camassa–Holm type equation
In this paper, we study an integrable Camassa–Holm type equation. We proved that if the initial datum is compactly supported in ; then the corresponding solution to the Camassa–Holm type equation has the following property: Furthermore, is a continuous non-vanishing function and strictly decreasing. Long time behavior for the support of momentum density is also studied.
期刊介绍:
The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.