涉及球和环形域中规定平均曲率算子的诺伊曼问题的径向解

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Meiyu Liu, Minghe Pei, Libo Wang
{"title":"涉及球和环形域中规定平均曲率算子的诺伊曼问题的径向解","authors":"Meiyu Liu,&nbsp;Minghe Pei,&nbsp;Libo Wang","doi":"10.1016/j.aml.2024.109256","DOIUrl":null,"url":null,"abstract":"<div><p>Using topological transversality method together with barrier strip technique and cut-off technique, we obtain new existence and uniqueness results of radial solutions to the Neumann problems involving prescribed mean curvature operator <span><span><span><math><mfenced><mrow><mtable><mtr><mtd><mtext>div</mtext><mfenced><mrow><mfrac><mrow><mo>∇</mo><mi>v</mi></mrow><mrow><msqrt><mrow><mn>1</mn><mo>+</mo><msup><mrow><mrow><mo>|</mo><mo>∇</mo><mi>v</mi><mo>|</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup></mrow></msqrt></mrow></mfrac></mrow></mfenced><mo>=</mo><mi>f</mi><mfenced><mrow><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow><mo>,</mo><mi>v</mi><mo>,</mo><mfrac><mrow><mi>d</mi><mi>v</mi></mrow><mrow><mi>d</mi><mi>r</mi></mrow></mfrac></mrow></mfenced><mspace></mspace><mi>i</mi><mi>n</mi><mspace></mspace><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd><mfrac><mrow><mi>∂</mi><mi>v</mi></mrow><mrow><mi>∂</mi><mi>n</mi></mrow></mfrac><mo>=</mo><mn>0</mn><mspace></mspace><mi>o</mi><mi>n</mi><mspace></mspace><mi>∂</mi><mi>Ω</mi><mo>,</mo></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>where <span><math><mrow><mi>Ω</mi><mo>=</mo><mrow><mo>{</mo><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>:</mo><msub><mrow><mi>R</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>&lt;</mo><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow><mo>&lt;</mo><msub><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>}</mo></mrow><mrow><mo>(</mo><mn>0</mn><mo>≤</mo><msub><mrow><mi>R</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>&lt;</mo><msub><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mi>N</mi><mo>≥</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mi>f</mi><mo>:</mo><mrow><mo>[</mo><msub><mrow><mi>R</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>]</mo></mrow><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>→</mo><mi>R</mi></mrow></math></span> is continuous. Meanwhile, we demonstrate the importance of our results through an illustrative example.</p></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Radial solutions for Neumann problems involving prescribed mean curvature operator in a ball and in an annular domain\",\"authors\":\"Meiyu Liu,&nbsp;Minghe Pei,&nbsp;Libo Wang\",\"doi\":\"10.1016/j.aml.2024.109256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Using topological transversality method together with barrier strip technique and cut-off technique, we obtain new existence and uniqueness results of radial solutions to the Neumann problems involving prescribed mean curvature operator <span><span><span><math><mfenced><mrow><mtable><mtr><mtd><mtext>div</mtext><mfenced><mrow><mfrac><mrow><mo>∇</mo><mi>v</mi></mrow><mrow><msqrt><mrow><mn>1</mn><mo>+</mo><msup><mrow><mrow><mo>|</mo><mo>∇</mo><mi>v</mi><mo>|</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup></mrow></msqrt></mrow></mfrac></mrow></mfenced><mo>=</mo><mi>f</mi><mfenced><mrow><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow><mo>,</mo><mi>v</mi><mo>,</mo><mfrac><mrow><mi>d</mi><mi>v</mi></mrow><mrow><mi>d</mi><mi>r</mi></mrow></mfrac></mrow></mfenced><mspace></mspace><mi>i</mi><mi>n</mi><mspace></mspace><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd><mfrac><mrow><mi>∂</mi><mi>v</mi></mrow><mrow><mi>∂</mi><mi>n</mi></mrow></mfrac><mo>=</mo><mn>0</mn><mspace></mspace><mi>o</mi><mi>n</mi><mspace></mspace><mi>∂</mi><mi>Ω</mi><mo>,</mo></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>where <span><math><mrow><mi>Ω</mi><mo>=</mo><mrow><mo>{</mo><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>:</mo><msub><mrow><mi>R</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>&lt;</mo><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow><mo>&lt;</mo><msub><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>}</mo></mrow><mrow><mo>(</mo><mn>0</mn><mo>≤</mo><msub><mrow><mi>R</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>&lt;</mo><msub><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mi>N</mi><mo>≥</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mi>f</mi><mo>:</mo><mrow><mo>[</mo><msub><mrow><mi>R</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>]</mo></mrow><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>→</mo><mi>R</mi></mrow></math></span> is continuous. Meanwhile, we demonstrate the importance of our results through an illustrative example.</p></div>\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893965924002763\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965924002763","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们利用拓扑横断性方法以及障带技术和截断技术,得到了涉及规定均值曲率算子(其中 , 是连续的)的诺伊曼问题径向解的新存在性和唯一性结果。同时,我们通过一个示例证明了我们结果的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Radial solutions for Neumann problems involving prescribed mean curvature operator in a ball and in an annular domain

Using topological transversality method together with barrier strip technique and cut-off technique, we obtain new existence and uniqueness results of radial solutions to the Neumann problems involving prescribed mean curvature operator divv1+|v|2=f|x|,v,dvdrinΩ,vn=0onΩ,where Ω={xRN:R1<|x|<R2}(0R1<R2,N2), f:[R1,R2]×R2R is continuous. Meanwhile, we demonstrate the importance of our results through an illustrative example.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信