{"title":"涉及球和环形域中规定平均曲率算子的诺伊曼问题的径向解","authors":"Meiyu Liu, Minghe Pei, Libo Wang","doi":"10.1016/j.aml.2024.109256","DOIUrl":null,"url":null,"abstract":"<div><p>Using topological transversality method together with barrier strip technique and cut-off technique, we obtain new existence and uniqueness results of radial solutions to the Neumann problems involving prescribed mean curvature operator <span><span><span><math><mfenced><mrow><mtable><mtr><mtd><mtext>div</mtext><mfenced><mrow><mfrac><mrow><mo>∇</mo><mi>v</mi></mrow><mrow><msqrt><mrow><mn>1</mn><mo>+</mo><msup><mrow><mrow><mo>|</mo><mo>∇</mo><mi>v</mi><mo>|</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup></mrow></msqrt></mrow></mfrac></mrow></mfenced><mo>=</mo><mi>f</mi><mfenced><mrow><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow><mo>,</mo><mi>v</mi><mo>,</mo><mfrac><mrow><mi>d</mi><mi>v</mi></mrow><mrow><mi>d</mi><mi>r</mi></mrow></mfrac></mrow></mfenced><mspace></mspace><mi>i</mi><mi>n</mi><mspace></mspace><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd><mfrac><mrow><mi>∂</mi><mi>v</mi></mrow><mrow><mi>∂</mi><mi>n</mi></mrow></mfrac><mo>=</mo><mn>0</mn><mspace></mspace><mi>o</mi><mi>n</mi><mspace></mspace><mi>∂</mi><mi>Ω</mi><mo>,</mo></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>where <span><math><mrow><mi>Ω</mi><mo>=</mo><mrow><mo>{</mo><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>:</mo><msub><mrow><mi>R</mi></mrow><mrow><mn>1</mn></mrow></msub><mo><</mo><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow><mo><</mo><msub><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>}</mo></mrow><mrow><mo>(</mo><mn>0</mn><mo>≤</mo><msub><mrow><mi>R</mi></mrow><mrow><mn>1</mn></mrow></msub><mo><</mo><msub><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mi>N</mi><mo>≥</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mi>f</mi><mo>:</mo><mrow><mo>[</mo><msub><mrow><mi>R</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>]</mo></mrow><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>→</mo><mi>R</mi></mrow></math></span> is continuous. Meanwhile, we demonstrate the importance of our results through an illustrative example.</p></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Radial solutions for Neumann problems involving prescribed mean curvature operator in a ball and in an annular domain\",\"authors\":\"Meiyu Liu, Minghe Pei, Libo Wang\",\"doi\":\"10.1016/j.aml.2024.109256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Using topological transversality method together with barrier strip technique and cut-off technique, we obtain new existence and uniqueness results of radial solutions to the Neumann problems involving prescribed mean curvature operator <span><span><span><math><mfenced><mrow><mtable><mtr><mtd><mtext>div</mtext><mfenced><mrow><mfrac><mrow><mo>∇</mo><mi>v</mi></mrow><mrow><msqrt><mrow><mn>1</mn><mo>+</mo><msup><mrow><mrow><mo>|</mo><mo>∇</mo><mi>v</mi><mo>|</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup></mrow></msqrt></mrow></mfrac></mrow></mfenced><mo>=</mo><mi>f</mi><mfenced><mrow><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow><mo>,</mo><mi>v</mi><mo>,</mo><mfrac><mrow><mi>d</mi><mi>v</mi></mrow><mrow><mi>d</mi><mi>r</mi></mrow></mfrac></mrow></mfenced><mspace></mspace><mi>i</mi><mi>n</mi><mspace></mspace><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd><mfrac><mrow><mi>∂</mi><mi>v</mi></mrow><mrow><mi>∂</mi><mi>n</mi></mrow></mfrac><mo>=</mo><mn>0</mn><mspace></mspace><mi>o</mi><mi>n</mi><mspace></mspace><mi>∂</mi><mi>Ω</mi><mo>,</mo></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>where <span><math><mrow><mi>Ω</mi><mo>=</mo><mrow><mo>{</mo><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>:</mo><msub><mrow><mi>R</mi></mrow><mrow><mn>1</mn></mrow></msub><mo><</mo><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow><mo><</mo><msub><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>}</mo></mrow><mrow><mo>(</mo><mn>0</mn><mo>≤</mo><msub><mrow><mi>R</mi></mrow><mrow><mn>1</mn></mrow></msub><mo><</mo><msub><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mi>N</mi><mo>≥</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mi>f</mi><mo>:</mo><mrow><mo>[</mo><msub><mrow><mi>R</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>]</mo></mrow><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>→</mo><mi>R</mi></mrow></math></span> is continuous. Meanwhile, we demonstrate the importance of our results through an illustrative example.</p></div>\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893965924002763\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965924002763","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Radial solutions for Neumann problems involving prescribed mean curvature operator in a ball and in an annular domain
Using topological transversality method together with barrier strip technique and cut-off technique, we obtain new existence and uniqueness results of radial solutions to the Neumann problems involving prescribed mean curvature operator where , is continuous. Meanwhile, we demonstrate the importance of our results through an illustrative example.
期刊介绍:
The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.