非线性薛定谔方程的质量和能量守恒松弛虚拟元素法

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Jixiao Guo , Yanping Chen , Qin Liang
{"title":"非线性薛定谔方程的质量和能量守恒松弛虚拟元素法","authors":"Jixiao Guo ,&nbsp;Yanping Chen ,&nbsp;Qin Liang","doi":"10.1016/j.aml.2024.109251","DOIUrl":null,"url":null,"abstract":"<div><p>This paper develops a conservative relaxation virtual element method for the nonlinear Schrödinger equation on polygonal meshes. The advantage of this method is to build the virtual element space where the basis functions do not need to be explicitly defined for each local element, and the bilinear forms and nonlinear terms can be computed by using elementwise polynomial projections and pre-defined degrees of freedom. Furthermore, the constructed schemes ensure the conservation of both mass and energy in discrete senses. By using the Brouwer fixed point theorem, we prove the unique solvability of the fully discrete scheme. Finally, some numerical experiments are implemented to verify the theoretical results.</p></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The mass- and energy-conserving relaxation virtual element method for the nonlinear Schrödinger equation\",\"authors\":\"Jixiao Guo ,&nbsp;Yanping Chen ,&nbsp;Qin Liang\",\"doi\":\"10.1016/j.aml.2024.109251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper develops a conservative relaxation virtual element method for the nonlinear Schrödinger equation on polygonal meshes. The advantage of this method is to build the virtual element space where the basis functions do not need to be explicitly defined for each local element, and the bilinear forms and nonlinear terms can be computed by using elementwise polynomial projections and pre-defined degrees of freedom. Furthermore, the constructed schemes ensure the conservation of both mass and energy in discrete senses. By using the Brouwer fixed point theorem, we prove the unique solvability of the fully discrete scheme. Finally, some numerical experiments are implemented to verify the theoretical results.</p></div>\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893965924002714\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965924002714","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文针对多边形网格上的非线性薛定谔方程开发了一种保守松弛虚拟元素方法。该方法的优势在于建立虚拟元素空间,无需为每个局部元素明确定义基函数,并且可以通过使用元素多项式投影和预定义自由度来计算双线性形式和非线性项。此外,所构建的方案还能确保离散意义上的质量和能量守恒。通过使用布劳威尔定点定理,我们证明了完全离散方案的唯一可解性。最后,我们通过一些数值实验来验证理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The mass- and energy-conserving relaxation virtual element method for the nonlinear Schrödinger equation

This paper develops a conservative relaxation virtual element method for the nonlinear Schrödinger equation on polygonal meshes. The advantage of this method is to build the virtual element space where the basis functions do not need to be explicitly defined for each local element, and the bilinear forms and nonlinear terms can be computed by using elementwise polynomial projections and pre-defined degrees of freedom. Furthermore, the constructed schemes ensure the conservation of both mass and energy in discrete senses. By using the Brouwer fixed point theorem, we prove the unique solvability of the fully discrete scheme. Finally, some numerical experiments are implemented to verify the theoretical results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信