变系数里兹空间分数扩散方程的无条件收敛[公式省略]分裂迭代法

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Zi-Hang She , Yong-Qi Wen , Yi-Feng Qiu , Xian-Ming Gu
{"title":"变系数里兹空间分数扩散方程的无条件收敛[公式省略]分裂迭代法","authors":"Zi-Hang She ,&nbsp;Yong-Qi Wen ,&nbsp;Yi-Feng Qiu ,&nbsp;Xian-Ming Gu","doi":"10.1016/j.aml.2024.109252","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we consider fast solvers for discrete linear systems generated by Riesz space fractional diffusion equations. We extract a scalar matrix, a compensation matrix, and a <span><math><mi>τ</mi></math></span> matrix from the coefficient matrix, and use their sum to construct a class of <span><math><mi>τ</mi></math></span> splitting iterative methods. Additionally, we design a preconditioner for the conjugate gradient method. Theoretical analyses show that the proposed <span><math><mi>τ</mi></math></span> splitting iterative methods are unconditionally convergent with convergence rates independent of step-sizes. Numerical results are provided to demonstrate the effectiveness of the proposed iterative methods.</p></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unconditionally convergent τ splitting iterative methods for variable coefficient Riesz space fractional diffusion equations\",\"authors\":\"Zi-Hang She ,&nbsp;Yong-Qi Wen ,&nbsp;Yi-Feng Qiu ,&nbsp;Xian-Ming Gu\",\"doi\":\"10.1016/j.aml.2024.109252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we consider fast solvers for discrete linear systems generated by Riesz space fractional diffusion equations. We extract a scalar matrix, a compensation matrix, and a <span><math><mi>τ</mi></math></span> matrix from the coefficient matrix, and use their sum to construct a class of <span><math><mi>τ</mi></math></span> splitting iterative methods. Additionally, we design a preconditioner for the conjugate gradient method. Theoretical analyses show that the proposed <span><math><mi>τ</mi></math></span> splitting iterative methods are unconditionally convergent with convergence rates independent of step-sizes. Numerical results are provided to demonstrate the effectiveness of the proposed iterative methods.</p></div>\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893965924002726\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965924002726","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑了由 Riesz 空间分数扩散方程生成的离散线性系统的快速求解器。我们从系数矩阵中提取了一个标量矩阵、一个补偿矩阵和一个矩阵,并利用它们的总和构建了一类分裂迭代法。此外,我们还为共轭梯度法设计了一个前置条件器。理论分析表明,所提出的分裂迭代法是无条件收敛的,收敛率与步长无关。我们还提供了数值结果来证明所提迭代法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unconditionally convergent τ splitting iterative methods for variable coefficient Riesz space fractional diffusion equations

In this paper, we consider fast solvers for discrete linear systems generated by Riesz space fractional diffusion equations. We extract a scalar matrix, a compensation matrix, and a τ matrix from the coefficient matrix, and use their sum to construct a class of τ splitting iterative methods. Additionally, we design a preconditioner for the conjugate gradient method. Theoretical analyses show that the proposed τ splitting iterative methods are unconditionally convergent with convergence rates independent of step-sizes. Numerical results are provided to demonstrate the effectiveness of the proposed iterative methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信