用于偏微分方程稳定状态分岔和线性稳定性分析的神经网络

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Muhammad Luthfi Shahab, Hadi Susanto
{"title":"用于偏微分方程稳定状态分岔和线性稳定性分析的神经网络","authors":"Muhammad Luthfi Shahab,&nbsp;Hadi Susanto","doi":"10.1016/j.amc.2024.128985","DOIUrl":null,"url":null,"abstract":"<div><p>This research introduces an extended application of neural networks for solving nonlinear partial differential equations (PDEs). A neural network, combined with a pseudo-arclength continuation, is proposed to construct bifurcation diagrams from parameterized nonlinear PDEs. Additionally, a neural network approach is also presented for solving eigenvalue problems to analyze solution linear stability, focusing on identifying the largest eigenvalue. The effectiveness of the proposed neural network is examined through experiments on the Bratu equation and the Burgers equation. Results from a finite difference method are also presented as comparison. Varying numbers of grid points are employed in each case to assess the behavior and accuracy of both the neural network and the finite difference method. The experimental results demonstrate that the proposed neural network produces better solutions, generates more accurate bifurcation diagrams, has reasonable computational times, and proves effective for linear stability analysis.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0096300324004466/pdfft?md5=5d4e459bfc3422dcb9c7dbec8d916551&pid=1-s2.0-S0096300324004466-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Neural networks for bifurcation and linear stability analysis of steady states in partial differential equations\",\"authors\":\"Muhammad Luthfi Shahab,&nbsp;Hadi Susanto\",\"doi\":\"10.1016/j.amc.2024.128985\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This research introduces an extended application of neural networks for solving nonlinear partial differential equations (PDEs). A neural network, combined with a pseudo-arclength continuation, is proposed to construct bifurcation diagrams from parameterized nonlinear PDEs. Additionally, a neural network approach is also presented for solving eigenvalue problems to analyze solution linear stability, focusing on identifying the largest eigenvalue. The effectiveness of the proposed neural network is examined through experiments on the Bratu equation and the Burgers equation. Results from a finite difference method are also presented as comparison. Varying numbers of grid points are employed in each case to assess the behavior and accuracy of both the neural network and the finite difference method. The experimental results demonstrate that the proposed neural network produces better solutions, generates more accurate bifurcation diagrams, has reasonable computational times, and proves effective for linear stability analysis.</p></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0096300324004466/pdfft?md5=5d4e459bfc3422dcb9c7dbec8d916551&pid=1-s2.0-S0096300324004466-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0096300324004466\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300324004466","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本研究介绍了神经网络在求解非线性偏微分方程(PDEs)中的扩展应用。该研究提出了一种神经网络,并将其与伪arclength continuation相结合,以构建参数化非线性偏微分方程的分岔图。此外,还提出了一种神经网络方法,用于求解特征值问题,分析解的线性稳定性,重点是识别最大特征值。通过对布拉图方程和布尔格斯方程的实验,检验了所提出的神经网络的有效性。作为对比,还介绍了有限差分法的结果。每种情况都采用了不同数量的网格点,以评估神经网络和有限差分法的行为和精度。实验结果表明,所提出的神经网络能产生更好的解,生成更精确的分岔图,具有合理的计算时间,并能有效地进行线性稳定性分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural networks for bifurcation and linear stability analysis of steady states in partial differential equations

This research introduces an extended application of neural networks for solving nonlinear partial differential equations (PDEs). A neural network, combined with a pseudo-arclength continuation, is proposed to construct bifurcation diagrams from parameterized nonlinear PDEs. Additionally, a neural network approach is also presented for solving eigenvalue problems to analyze solution linear stability, focusing on identifying the largest eigenvalue. The effectiveness of the proposed neural network is examined through experiments on the Bratu equation and the Burgers equation. Results from a finite difference method are also presented as comparison. Varying numbers of grid points are employed in each case to assess the behavior and accuracy of both the neural network and the finite difference method. The experimental results demonstrate that the proposed neural network produces better solutions, generates more accurate bifurcation diagrams, has reasonable computational times, and proves effective for linear stability analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信