用于高可逆锌金属阳极的双功能氯化锂添加剂

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yang Song, Yongduo Liu, Daojun Long, Xiongxin Tao, Shijian Luo, Yuran Yang, Hao Chen, Meng Wang, Siguo Chen, Zidong Wei
{"title":"用于高可逆锌金属阳极的双功能氯化锂添加剂","authors":"Yang Song,&nbsp;Yongduo Liu,&nbsp;Daojun Long,&nbsp;Xiongxin Tao,&nbsp;Shijian Luo,&nbsp;Yuran Yang,&nbsp;Hao Chen,&nbsp;Meng Wang,&nbsp;Siguo Chen,&nbsp;Zidong Wei","doi":"10.1002/adfm.202410305","DOIUrl":null,"url":null,"abstract":"<p>Zinc metal has emerged as a promising candidate for high-capacity and low-cost anodes in aqueous zinc-ion batteries; nevertheless, it encounters serious obstacles, including low cycling stability and poor reversibility, caused by parasitic reactions and the formation of zinc dendrites. Herein, the study proposes a novel nonprotonic dimethylacetamide (DMAC)/ZnCl<sub>2</sub>/LiCl electrolyte that enables both solvation structural modulation of [ZnCl<sub>x</sub>]<sup>2-x</sup> and the cationic electrostatic shielding effect of [Li(DMAC)]<sup>+</sup> by controlling the concentration of LiCl. The optimal concentration of LiCl electrolyte (0.28 <span>m</span>), which results in the highest ratio of [ZnCl<sub>3</sub>]<sup>−</sup>, strikes a balance between low desolvation energy and a high mass transfer rate while promoting homoepitaxial deposition of Zn (002). Moreover, inert [Li(DMAC)]<sup>+</sup> ions, which possess a lower reduction potential, preferentially adsorb onto zinc protrusions, mitigating the tip effect. Leveraging electrolyte engineering, the zinc deposition/stripping process results in impressive long-term stability, surpassing 2,800 cycles, and the Zn||MnO<sub>2</sub> cell also achieves a stable lifespan extending beyond 1400 cycles. The research highlights the potential of LiCl as an additive in the modulation of water-free electrolytes.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"34 51","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual-Functional LiCl Additive for Highly Reversible Zinc Metal Anode\",\"authors\":\"Yang Song,&nbsp;Yongduo Liu,&nbsp;Daojun Long,&nbsp;Xiongxin Tao,&nbsp;Shijian Luo,&nbsp;Yuran Yang,&nbsp;Hao Chen,&nbsp;Meng Wang,&nbsp;Siguo Chen,&nbsp;Zidong Wei\",\"doi\":\"10.1002/adfm.202410305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Zinc metal has emerged as a promising candidate for high-capacity and low-cost anodes in aqueous zinc-ion batteries; nevertheless, it encounters serious obstacles, including low cycling stability and poor reversibility, caused by parasitic reactions and the formation of zinc dendrites. Herein, the study proposes a novel nonprotonic dimethylacetamide (DMAC)/ZnCl<sub>2</sub>/LiCl electrolyte that enables both solvation structural modulation of [ZnCl<sub>x</sub>]<sup>2-x</sup> and the cationic electrostatic shielding effect of [Li(DMAC)]<sup>+</sup> by controlling the concentration of LiCl. The optimal concentration of LiCl electrolyte (0.28 <span>m</span>), which results in the highest ratio of [ZnCl<sub>3</sub>]<sup>−</sup>, strikes a balance between low desolvation energy and a high mass transfer rate while promoting homoepitaxial deposition of Zn (002). Moreover, inert [Li(DMAC)]<sup>+</sup> ions, which possess a lower reduction potential, preferentially adsorb onto zinc protrusions, mitigating the tip effect. Leveraging electrolyte engineering, the zinc deposition/stripping process results in impressive long-term stability, surpassing 2,800 cycles, and the Zn||MnO<sub>2</sub> cell also achieves a stable lifespan extending beyond 1400 cycles. The research highlights the potential of LiCl as an additive in the modulation of water-free electrolytes.</p>\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"34 51\",\"pages\":\"\"},\"PeriodicalIF\":19.0000,\"publicationDate\":\"2024-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adfm.202410305\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adfm.202410305","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

金属锌已成为水性锌离子电池中高容量、低成本阳极的理想候选材料;然而,它也遇到了严重的障碍,包括寄生反应和锌枝晶的形成导致的循环稳定性低和可逆性差。本研究提出了一种新型非质子二甲基乙酰胺(DMAC)/氯化锌/氯化锂电解质,通过控制氯化锂的浓度,既能调节[ZnClx]2-x的溶解结构,又能发挥[Li(DMAC)]+的阳离子静电屏蔽效应。最佳的氯化锂电解质浓度(0.28 m)可产生最高比率的[ZnCl3]-,在低脱溶能和高传质速率之间取得了平衡,同时促进了 Zn (002) 的同位沉积。此外,具有较低还原电位的惰性[Li(DMAC)]+ 离子会优先吸附在锌突起上,从而减轻尖端效应。利用电解质工程技术,锌沉积/剥离过程实现了令人印象深刻的长期稳定性,超过 2800 次循环,Zn||MnO2 电池也实现了超过 1400 次循环的稳定寿命。这项研究凸显了氯化锂作为无水电解质调制添加剂的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Dual-Functional LiCl Additive for Highly Reversible Zinc Metal Anode

Dual-Functional LiCl Additive for Highly Reversible Zinc Metal Anode

Zinc metal has emerged as a promising candidate for high-capacity and low-cost anodes in aqueous zinc-ion batteries; nevertheless, it encounters serious obstacles, including low cycling stability and poor reversibility, caused by parasitic reactions and the formation of zinc dendrites. Herein, the study proposes a novel nonprotonic dimethylacetamide (DMAC)/ZnCl2/LiCl electrolyte that enables both solvation structural modulation of [ZnClx]2-x and the cationic electrostatic shielding effect of [Li(DMAC)]+ by controlling the concentration of LiCl. The optimal concentration of LiCl electrolyte (0.28 m), which results in the highest ratio of [ZnCl3], strikes a balance between low desolvation energy and a high mass transfer rate while promoting homoepitaxial deposition of Zn (002). Moreover, inert [Li(DMAC)]+ ions, which possess a lower reduction potential, preferentially adsorb onto zinc protrusions, mitigating the tip effect. Leveraging electrolyte engineering, the zinc deposition/stripping process results in impressive long-term stability, surpassing 2,800 cycles, and the Zn||MnO2 cell also achieves a stable lifespan extending beyond 1400 cycles. The research highlights the potential of LiCl as an additive in the modulation of water-free electrolytes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信