一类标量四元多项式延迟系统的稳定性、分岔和混沌。

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Mengyu Ye, Xiao-Song Yang
{"title":"一类标量四元多项式延迟系统的稳定性、分岔和混沌。","authors":"Mengyu Ye, Xiao-Song Yang","doi":"10.1063/5.0208714","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, a class of scalar quartic polynomial delay systems is investigated. We found rich dynamics in this system through numerical simulation, including chaotic attractors, chaotic saddles, and intermittent chaos. Moreover, this chaotic quartic system may serve as an approximation, through Taylor expansion, for a wide class of scalar delay differential equations. Thus, these nonlinear systems may exhibit chaotic behaviors, and the studies in our paper may provide an insight into the emergence of chaos in other time-delay nonlinear systems. We also conduct a detailed theoretical analysis of the system, including the stability of equilibria and Hopf bifurcation analysis based on the theory of normal form and center manifold. Additionally, a numerical analysis is provided to give numerical evidence for the existence of chaos.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability, bifurcation, and chaos in a class of scalar quartic polynomial delay systems.\",\"authors\":\"Mengyu Ye, Xiao-Song Yang\",\"doi\":\"10.1063/5.0208714\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, a class of scalar quartic polynomial delay systems is investigated. We found rich dynamics in this system through numerical simulation, including chaotic attractors, chaotic saddles, and intermittent chaos. Moreover, this chaotic quartic system may serve as an approximation, through Taylor expansion, for a wide class of scalar delay differential equations. Thus, these nonlinear systems may exhibit chaotic behaviors, and the studies in our paper may provide an insight into the emergence of chaos in other time-delay nonlinear systems. We also conduct a detailed theoretical analysis of the system, including the stability of equilibria and Hopf bifurcation analysis based on the theory of normal form and center manifold. Additionally, a numerical analysis is provided to give numerical evidence for the existence of chaos.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0208714\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0208714","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一类标量四元多项式延迟系统。通过数值模拟,我们发现该系统具有丰富的动力学特性,包括混沌吸引子、混沌鞍和间歇混沌。此外,这个混沌四元数系统还可以通过泰勒展开成为多种标量延迟微分方程的近似值。因此,这些非线性系统可能会表现出混沌行为,而我们论文中的研究可能会为其他时延非线性系统中混沌的出现提供启示。我们还对该系统进行了详细的理论分析,包括基于正态和中心流形理论的平衡点稳定性和霍普夫分岔分析。此外,我们还进行了数值分析,为混沌的存在提供了数值证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability, bifurcation, and chaos in a class of scalar quartic polynomial delay systems.

In this paper, a class of scalar quartic polynomial delay systems is investigated. We found rich dynamics in this system through numerical simulation, including chaotic attractors, chaotic saddles, and intermittent chaos. Moreover, this chaotic quartic system may serve as an approximation, through Taylor expansion, for a wide class of scalar delay differential equations. Thus, these nonlinear systems may exhibit chaotic behaviors, and the studies in our paper may provide an insight into the emergence of chaos in other time-delay nonlinear systems. We also conduct a detailed theoretical analysis of the system, including the stability of equilibria and Hopf bifurcation analysis based on the theory of normal form and center manifold. Additionally, a numerical analysis is provided to give numerical evidence for the existence of chaos.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信