Verena Pichler, Kentaro Itokawa, Beniamino Caputo, Carlo Maria De Marco, Paola Serini, Romeo Bellini, Rodolfo Veronesi, Claudio De Liberato, Federico Romiti, Daniele Arnoldi, Annapaola Rizzoli, Riccardo Paolo Lia, Domenico Otranto, Antonios Michaelakis, Marina Bisia, Noboru Minakawa, Shinji Kasai, Alessandra della Torre
{"title":"对 vgsc 基因的无偏差序列分析表明,在库蚊中存在新型和已知的基因敲除抗性突变,这对病媒控制措施提出了挑战","authors":"Verena Pichler, Kentaro Itokawa, Beniamino Caputo, Carlo Maria De Marco, Paola Serini, Romeo Bellini, Rodolfo Veronesi, Claudio De Liberato, Federico Romiti, Daniele Arnoldi, Annapaola Rizzoli, Riccardo Paolo Lia, Domenico Otranto, Antonios Michaelakis, Marina Bisia, Noboru Minakawa, Shinji Kasai, Alessandra della Torre","doi":"10.1007/s10340-024-01818-6","DOIUrl":null,"url":null,"abstract":"<p>Pyrethroids, targeting the voltage gated sodium channel (VGSC), are fundamental for the control of arboviral disease circulation. The spread of pyrethroid resistance among vector species represents thus a major public health concern. <i>Culex pipiens</i> is one of the most abundant European mosquito species and main vector of West Nile virus, leading cause of arboviral encephalitis worldwide. Despite this, monitoring of its resistance status and the understanding of underlying mechanisms are widely neglected. Herein, we performed an oligo-hybridization capture approach on 82 <i>Cx. pipiens</i> specimens from Italy and Greece to investigate the whole coding sequence of the <i>vgsc</i> gene for the presence of known and potential knock-down resistance (<i>kdr</i>) mutations associated with target-site resistance to pyrethroids in insects. Among the 26 non-synonymous substitutions revealed by the analysis, the super-<i>kdr</i> haplotype—i.e. the association of <i>kdr</i>-alleles 918T and 1014F, known for conferring a strongly enhanced resistance phenotype in <i>Musca domestica</i> – was revealed for the first time in mosquitoes. Three more potential <i>kdr</i> alleles were detected for the first time in <i>Cx. pipiens</i> and multiple <i>kdr</i> variants were observed for locus 1014, with allele 1014F, reaching frequencies > 80%. Overall, results depict a worrisome situation that could affect the ability to control West Nile virus outbreaks in southern Europe. To avoid this, resistance monitoring needs to be intensified and an enhancement of the diagnostic tool box for the easy detection of different <i>kdr</i>-variants (including in particular the super-<i>kdr</i> haplotype) and for subsequent functional studies on the resistance phenotype of detected variants, is required.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":"13 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unbiased sequence analysis of vgsc gene reveals circulation of novel and known knock-down resistance mutations in Culex pipiens, challenging vector control measures\",\"authors\":\"Verena Pichler, Kentaro Itokawa, Beniamino Caputo, Carlo Maria De Marco, Paola Serini, Romeo Bellini, Rodolfo Veronesi, Claudio De Liberato, Federico Romiti, Daniele Arnoldi, Annapaola Rizzoli, Riccardo Paolo Lia, Domenico Otranto, Antonios Michaelakis, Marina Bisia, Noboru Minakawa, Shinji Kasai, Alessandra della Torre\",\"doi\":\"10.1007/s10340-024-01818-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Pyrethroids, targeting the voltage gated sodium channel (VGSC), are fundamental for the control of arboviral disease circulation. The spread of pyrethroid resistance among vector species represents thus a major public health concern. <i>Culex pipiens</i> is one of the most abundant European mosquito species and main vector of West Nile virus, leading cause of arboviral encephalitis worldwide. Despite this, monitoring of its resistance status and the understanding of underlying mechanisms are widely neglected. Herein, we performed an oligo-hybridization capture approach on 82 <i>Cx. pipiens</i> specimens from Italy and Greece to investigate the whole coding sequence of the <i>vgsc</i> gene for the presence of known and potential knock-down resistance (<i>kdr</i>) mutations associated with target-site resistance to pyrethroids in insects. Among the 26 non-synonymous substitutions revealed by the analysis, the super-<i>kdr</i> haplotype—i.e. the association of <i>kdr</i>-alleles 918T and 1014F, known for conferring a strongly enhanced resistance phenotype in <i>Musca domestica</i> – was revealed for the first time in mosquitoes. Three more potential <i>kdr</i> alleles were detected for the first time in <i>Cx. pipiens</i> and multiple <i>kdr</i> variants were observed for locus 1014, with allele 1014F, reaching frequencies > 80%. Overall, results depict a worrisome situation that could affect the ability to control West Nile virus outbreaks in southern Europe. To avoid this, resistance monitoring needs to be intensified and an enhancement of the diagnostic tool box for the easy detection of different <i>kdr</i>-variants (including in particular the super-<i>kdr</i> haplotype) and for subsequent functional studies on the resistance phenotype of detected variants, is required.</p>\",\"PeriodicalId\":16736,\"journal\":{\"name\":\"Journal of Pest Science\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pest Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s10340-024-01818-6\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pest Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10340-024-01818-6","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
Unbiased sequence analysis of vgsc gene reveals circulation of novel and known knock-down resistance mutations in Culex pipiens, challenging vector control measures
Pyrethroids, targeting the voltage gated sodium channel (VGSC), are fundamental for the control of arboviral disease circulation. The spread of pyrethroid resistance among vector species represents thus a major public health concern. Culex pipiens is one of the most abundant European mosquito species and main vector of West Nile virus, leading cause of arboviral encephalitis worldwide. Despite this, monitoring of its resistance status and the understanding of underlying mechanisms are widely neglected. Herein, we performed an oligo-hybridization capture approach on 82 Cx. pipiens specimens from Italy and Greece to investigate the whole coding sequence of the vgsc gene for the presence of known and potential knock-down resistance (kdr) mutations associated with target-site resistance to pyrethroids in insects. Among the 26 non-synonymous substitutions revealed by the analysis, the super-kdr haplotype—i.e. the association of kdr-alleles 918T and 1014F, known for conferring a strongly enhanced resistance phenotype in Musca domestica – was revealed for the first time in mosquitoes. Three more potential kdr alleles were detected for the first time in Cx. pipiens and multiple kdr variants were observed for locus 1014, with allele 1014F, reaching frequencies > 80%. Overall, results depict a worrisome situation that could affect the ability to control West Nile virus outbreaks in southern Europe. To avoid this, resistance monitoring needs to be intensified and an enhancement of the diagnostic tool box for the easy detection of different kdr-variants (including in particular the super-kdr haplotype) and for subsequent functional studies on the resistance phenotype of detected variants, is required.
期刊介绍:
Journal of Pest Science publishes high-quality papers on all aspects of pest science in agriculture, horticulture (including viticulture), forestry, urban pests, and stored products research, including health and safety issues.
Journal of Pest Science reports on advances in control of pests and animal vectors of diseases, the biology, ethology and ecology of pests and their antagonists, and the use of other beneficial organisms in pest control. The journal covers all noxious or damaging groups of animals, including arthropods, nematodes, molluscs, and vertebrates.
Journal of Pest Science devotes special attention to emerging and innovative pest control strategies, including the side effects of such approaches on non-target organisms, for example natural enemies and pollinators, and the implementation of these strategies in integrated pest management.
Journal of Pest Science also publishes papers on the management of agro- and forest ecosystems where this is relevant to pest control. Papers on important methodological developments relevant for pest control will be considered as well.