基于图形的 fMRI 数据预处理和分析的多重宇宙:关于为知情分析决策支持工具提供分析选择的系统性文献综述。

IF 7.5 1区 医学 Q1 BEHAVIORAL SCIENCES
Daniel Kristanto , Micha Burkhardt , Christiane Thiel , Stefan Debener , Carsten Gießing , Andrea Hildebrandt
{"title":"基于图形的 fMRI 数据预处理和分析的多重宇宙:关于为知情分析决策支持工具提供分析选择的系统性文献综述。","authors":"Daniel Kristanto ,&nbsp;Micha Burkhardt ,&nbsp;Christiane Thiel ,&nbsp;Stefan Debener ,&nbsp;Carsten Gießing ,&nbsp;Andrea Hildebrandt","doi":"10.1016/j.neubiorev.2024.105846","DOIUrl":null,"url":null,"abstract":"<div><p>The large number of different analytical choices used by researchers is partly responsible for the challenge of replication in neuroimaging studies. For an exhaustive robustness analysis, knowledge of the full space of analytical options is essential. We conducted a systematic literature review to identify the analytical decisions in functional neuroimaging data preprocessing and analysis in the emerging field of cognitive network neuroscience. We found 61 different steps, with 17 of them having debatable parameter choices. Scrubbing, global signal regression, and spatial smoothing are among the controversial steps. There is no standardized order in which different steps are applied, and the parameter settings within several steps vary widely across studies. By aggregating the pipelines across studies, we propose three taxonomic levels to categorize analytical choices: 1) inclusion or exclusion of specific steps, 2) parameter tuning within steps, and 3) distinct sequencing of steps. We have developed a decision support application with high educational value called METEOR to facilitate access to the data in order to design well-informed robustness (multiverse) analysis.</p></div>","PeriodicalId":56105,"journal":{"name":"Neuroscience and Biobehavioral Reviews","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0149763424003154/pdfft?md5=415d69ca895863b3bc324772ded713a5&pid=1-s2.0-S0149763424003154-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The multiverse of data preprocessing and analysis in graph-based fMRI: A systematic literature review of analytical choices fed into a decision support tool for informed analysis\",\"authors\":\"Daniel Kristanto ,&nbsp;Micha Burkhardt ,&nbsp;Christiane Thiel ,&nbsp;Stefan Debener ,&nbsp;Carsten Gießing ,&nbsp;Andrea Hildebrandt\",\"doi\":\"10.1016/j.neubiorev.2024.105846\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The large number of different analytical choices used by researchers is partly responsible for the challenge of replication in neuroimaging studies. For an exhaustive robustness analysis, knowledge of the full space of analytical options is essential. We conducted a systematic literature review to identify the analytical decisions in functional neuroimaging data preprocessing and analysis in the emerging field of cognitive network neuroscience. We found 61 different steps, with 17 of them having debatable parameter choices. Scrubbing, global signal regression, and spatial smoothing are among the controversial steps. There is no standardized order in which different steps are applied, and the parameter settings within several steps vary widely across studies. By aggregating the pipelines across studies, we propose three taxonomic levels to categorize analytical choices: 1) inclusion or exclusion of specific steps, 2) parameter tuning within steps, and 3) distinct sequencing of steps. We have developed a decision support application with high educational value called METEOR to facilitate access to the data in order to design well-informed robustness (multiverse) analysis.</p></div>\",\"PeriodicalId\":56105,\"journal\":{\"name\":\"Neuroscience and Biobehavioral Reviews\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0149763424003154/pdfft?md5=415d69ca895863b3bc324772ded713a5&pid=1-s2.0-S0149763424003154-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroscience and Biobehavioral Reviews\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0149763424003154\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience and Biobehavioral Reviews","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0149763424003154","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

研究人员使用的大量不同分析选择是神经成像研究中复制难题的部分原因。要进行详尽的稳健性分析,了解分析选项的全部空间至关重要。我们进行了系统的文献综述,以确定认知网络神经科学这一新兴领域中功能神经成像数据预处理和分析的分析决策。我们发现了 61 个不同的步骤,其中 17 个步骤的参数选择值得商榷。有争议的步骤包括擦除、全局信号回归和空间平滑。不同步骤的应用没有统一的顺序,不同研究中几个步骤的参数设置也大相径庭。通过汇总不同研究的流程,我们提出了三个分类级别来对分析选择进行分类:1)纳入或排除特定步骤;2)步骤内的参数调整;3)步骤的不同排序。我们开发了一个具有很高教育价值的决策支持应用程序,名为 METEOR,以方便获取数据,从而在充分知情的情况下设计稳健性(多重宇宙)分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The multiverse of data preprocessing and analysis in graph-based fMRI: A systematic literature review of analytical choices fed into a decision support tool for informed analysis

The large number of different analytical choices used by researchers is partly responsible for the challenge of replication in neuroimaging studies. For an exhaustive robustness analysis, knowledge of the full space of analytical options is essential. We conducted a systematic literature review to identify the analytical decisions in functional neuroimaging data preprocessing and analysis in the emerging field of cognitive network neuroscience. We found 61 different steps, with 17 of them having debatable parameter choices. Scrubbing, global signal regression, and spatial smoothing are among the controversial steps. There is no standardized order in which different steps are applied, and the parameter settings within several steps vary widely across studies. By aggregating the pipelines across studies, we propose three taxonomic levels to categorize analytical choices: 1) inclusion or exclusion of specific steps, 2) parameter tuning within steps, and 3) distinct sequencing of steps. We have developed a decision support application with high educational value called METEOR to facilitate access to the data in order to design well-informed robustness (multiverse) analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.20
自引率
3.70%
发文量
466
审稿时长
6 months
期刊介绍: The official journal of the International Behavioral Neuroscience Society publishes original and significant review articles that explore the intersection between neuroscience and the study of psychological processes and behavior. The journal also welcomes articles that primarily focus on psychological processes and behavior, as long as they have relevance to one or more areas of neuroscience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信