支持视觉功能的蛋白质在异鳃腹足类动物中的表达。

IF 1.9 4区 心理学 Q3 BEHAVIORAL SCIENCES
Ryota Matsuo, Haeri Kwon, Kiyotaka Takishita, Takako Nishi, Yuko Matsuo
{"title":"支持视觉功能的蛋白质在异鳃腹足类动物中的表达。","authors":"Ryota Matsuo, Haeri Kwon, Kiyotaka Takishita, Takako Nishi, Yuko Matsuo","doi":"10.1007/s00359-024-01712-7","DOIUrl":null,"url":null,"abstract":"<p><p>To sense light, animals often utilize mechanisms that rely on visual pigments composed of opsin and retinal. The photon-induced isomerization of 11-cis-retinal to the all-trans configuration triggers phototransduction cascades, resulting in a change in the membrane potential of the photoreceptor. In mollusks, the most abundant opsin in the eye is Gq-coupled rhodopsin (Gq-rhodopsin). The Gq-rhodopsin-based visual pigment is bistable, with the regeneration of 11-cis-retinal occurring in a light-dependent manner without leaving the opsin moiety. 11-cis-retinal is also regenerated by the action of retinochrome in the cell bodies. Retinal binding protein (RALBP) mediates retinal transport between Gq-rhodopsin and retinochrome in the cytoplasm. However, recent studies have identified additional bistable opsins in mollusks, including Opn5 and xenopsin. It is unknown whether these bistable opsins require RALBP and retinochrome for the continuous regeneration of 11-cis-retinal. In the present study, we examined the expression of RALBP and retinochrome in the photoreceptors expressing Opn5 or Xenopsin in the heterobranch gastropods Limax and Peronia. Our findings revealed that retinochrome, but not RALBP, was present in some of the Opn5A-positive brain photosensory neurons of Limax. The ciliary cells in the dorsal eye of Peronia, which express Xenopsin2, lacked both retinochrome and RALBP. Therefore, bistable opsins do not necessarily depend on the RALBP-retinochrome system in a cell. We also examined the expression of other proteins that support visual function, such as β-arrestin, Gq, and Go, in all types of photoreceptors in these animals, and uncovered differences in the molecular composition among the photoreceptors.</p>","PeriodicalId":54862,"journal":{"name":"Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Expression of proteins supporting visual function in heterobranch gastropods.\",\"authors\":\"Ryota Matsuo, Haeri Kwon, Kiyotaka Takishita, Takako Nishi, Yuko Matsuo\",\"doi\":\"10.1007/s00359-024-01712-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To sense light, animals often utilize mechanisms that rely on visual pigments composed of opsin and retinal. The photon-induced isomerization of 11-cis-retinal to the all-trans configuration triggers phototransduction cascades, resulting in a change in the membrane potential of the photoreceptor. In mollusks, the most abundant opsin in the eye is Gq-coupled rhodopsin (Gq-rhodopsin). The Gq-rhodopsin-based visual pigment is bistable, with the regeneration of 11-cis-retinal occurring in a light-dependent manner without leaving the opsin moiety. 11-cis-retinal is also regenerated by the action of retinochrome in the cell bodies. Retinal binding protein (RALBP) mediates retinal transport between Gq-rhodopsin and retinochrome in the cytoplasm. However, recent studies have identified additional bistable opsins in mollusks, including Opn5 and xenopsin. It is unknown whether these bistable opsins require RALBP and retinochrome for the continuous regeneration of 11-cis-retinal. In the present study, we examined the expression of RALBP and retinochrome in the photoreceptors expressing Opn5 or Xenopsin in the heterobranch gastropods Limax and Peronia. Our findings revealed that retinochrome, but not RALBP, was present in some of the Opn5A-positive brain photosensory neurons of Limax. The ciliary cells in the dorsal eye of Peronia, which express Xenopsin2, lacked both retinochrome and RALBP. Therefore, bistable opsins do not necessarily depend on the RALBP-retinochrome system in a cell. We also examined the expression of other proteins that support visual function, such as β-arrestin, Gq, and Go, in all types of photoreceptors in these animals, and uncovered differences in the molecular composition among the photoreceptors.</p>\",\"PeriodicalId\":54862,\"journal\":{\"name\":\"Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1007/s00359-024-01712-7\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1007/s00359-024-01712-7","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

动物通常利用由视紫红质和视网膜组成的视觉色素机制来感知光线。光子诱导的 11-顺式视网膜异构化为全反式构型会触发光传导级联,导致光感受器的膜电位发生变化。在软体动物中,眼睛中最丰富的视蛋白是 Gq-耦合视紫红质(Gq-视紫红质)。以 Gq-rhodopsin 为基础的视觉色素是双稳态的,11-顺式视网膜的再生是以依赖光的方式进行的,不离开视蛋白分子。11-顺式视网膜也可在细胞体内视网膜色素的作用下再生。视网膜结合蛋白(RALBP)介导细胞质中 Gq-视紫红质和视网膜色素之间的视网膜转运。然而,最近的研究在软体动物中发现了更多的双稳态视蛋白,包括 Opn5 和 xenopsin。目前还不清楚这些双稳态蛋白是否需要 RALBP 和视网膜色素来持续再生 11-顺式视网膜。在本研究中,我们检测了异支腹足动物Limax和Peronia中表达Opn5或Xenopsin的感光器中RALBP和视网膜色素的表达情况。我们的研究结果表明,在Limax的一些Opn5A阳性脑光感受神经元中存在视网膜色素,但不存在RALBP。Peronia背眼的睫状细胞表达Xenopsin2,但同时缺乏视网膜色素和RALBP。因此,双稳态蛋白并不一定依赖于细胞中的RALBP-视网膜色素系统。我们还研究了支持视觉功能的其他蛋白质(如β-arrestin、Gq和Go)在这些动物所有类型的感光器中的表达情况,发现了不同感光器分子组成的差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Expression of proteins supporting visual function in heterobranch gastropods.

Expression of proteins supporting visual function in heterobranch gastropods.

To sense light, animals often utilize mechanisms that rely on visual pigments composed of opsin and retinal. The photon-induced isomerization of 11-cis-retinal to the all-trans configuration triggers phototransduction cascades, resulting in a change in the membrane potential of the photoreceptor. In mollusks, the most abundant opsin in the eye is Gq-coupled rhodopsin (Gq-rhodopsin). The Gq-rhodopsin-based visual pigment is bistable, with the regeneration of 11-cis-retinal occurring in a light-dependent manner without leaving the opsin moiety. 11-cis-retinal is also regenerated by the action of retinochrome in the cell bodies. Retinal binding protein (RALBP) mediates retinal transport between Gq-rhodopsin and retinochrome in the cytoplasm. However, recent studies have identified additional bistable opsins in mollusks, including Opn5 and xenopsin. It is unknown whether these bistable opsins require RALBP and retinochrome for the continuous regeneration of 11-cis-retinal. In the present study, we examined the expression of RALBP and retinochrome in the photoreceptors expressing Opn5 or Xenopsin in the heterobranch gastropods Limax and Peronia. Our findings revealed that retinochrome, but not RALBP, was present in some of the Opn5A-positive brain photosensory neurons of Limax. The ciliary cells in the dorsal eye of Peronia, which express Xenopsin2, lacked both retinochrome and RALBP. Therefore, bistable opsins do not necessarily depend on the RALBP-retinochrome system in a cell. We also examined the expression of other proteins that support visual function, such as β-arrestin, Gq, and Go, in all types of photoreceptors in these animals, and uncovered differences in the molecular composition among the photoreceptors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
14.30%
发文量
67
审稿时长
1 months
期刊介绍: The Journal of Comparative Physiology A welcomes original articles, short reviews, and short communications in the following fields: - Neurobiology and neuroethology - Sensory physiology and ecology - Physiological and hormonal basis of behavior - Communication, orientation, and locomotion - Functional imaging and neuroanatomy Contributions should add to our understanding of mechanisms and not be purely descriptive. The level of organization addressed may be organismic, cellular, or molecular. Colour figures are free in print and online.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信