{"title":"尾状核神经元的多样性:骆驼和人类大脑的比较研究","authors":"Juman M. Almasaad, Ziad M. Bataineh, Sami Zaqout","doi":"10.1002/ar.25555","DOIUrl":null,"url":null,"abstract":"<p>Caudate nucleus (CN) neurons in camels and humans were examined using modified Golgi impregnation methods. Neurons were classified based on soma morphology, dendritic characteristics, and spine distribution. Three primary neuron types were identified in both species: rich-spiny (Type I), sparsely-spiny (Type II), and aspiny (Type III), each comprising subtypes with specific features. Comparative analysis revealed significant differences in soma size, dendritic morphology, and spine distribution between camels and humans. The study contributes to our understanding of structural diversity in CN neurons and provides insights into evolutionary neural adaptations.</p>","PeriodicalId":50965,"journal":{"name":"Anatomical Record-Advances in Integrative Anatomy and Evolutionary Biology","volume":"308 5","pages":"1410-1424"},"PeriodicalIF":2.1000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ar.25555","citationCount":"0","resultStr":"{\"title\":\"Neuronal diversity in the caudate nucleus: A comparative study between camel and human brains\",\"authors\":\"Juman M. Almasaad, Ziad M. Bataineh, Sami Zaqout\",\"doi\":\"10.1002/ar.25555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Caudate nucleus (CN) neurons in camels and humans were examined using modified Golgi impregnation methods. Neurons were classified based on soma morphology, dendritic characteristics, and spine distribution. Three primary neuron types were identified in both species: rich-spiny (Type I), sparsely-spiny (Type II), and aspiny (Type III), each comprising subtypes with specific features. Comparative analysis revealed significant differences in soma size, dendritic morphology, and spine distribution between camels and humans. The study contributes to our understanding of structural diversity in CN neurons and provides insights into evolutionary neural adaptations.</p>\",\"PeriodicalId\":50965,\"journal\":{\"name\":\"Anatomical Record-Advances in Integrative Anatomy and Evolutionary Biology\",\"volume\":\"308 5\",\"pages\":\"1410-1424\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ar.25555\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anatomical Record-Advances in Integrative Anatomy and Evolutionary Biology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://anatomypubs.onlinelibrary.wiley.com/doi/10.1002/ar.25555\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ANATOMY & MORPHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anatomical Record-Advances in Integrative Anatomy and Evolutionary Biology","FirstCategoryId":"3","ListUrlMain":"https://anatomypubs.onlinelibrary.wiley.com/doi/10.1002/ar.25555","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
Neuronal diversity in the caudate nucleus: A comparative study between camel and human brains
Caudate nucleus (CN) neurons in camels and humans were examined using modified Golgi impregnation methods. Neurons were classified based on soma morphology, dendritic characteristics, and spine distribution. Three primary neuron types were identified in both species: rich-spiny (Type I), sparsely-spiny (Type II), and aspiny (Type III), each comprising subtypes with specific features. Comparative analysis revealed significant differences in soma size, dendritic morphology, and spine distribution between camels and humans. The study contributes to our understanding of structural diversity in CN neurons and provides insights into evolutionary neural adaptations.