T C Ten Harkel, F Bielevelt, H A M Marres, K J A O Ingels, T J J Maal, C M Speksnijder
{"title":"优化桑尼布鲁克面部自动分级系统--利用面部地标提高深度学习网络的可靠性。","authors":"T C Ten Harkel, F Bielevelt, H A M Marres, K J A O Ingels, T J J Maal, C M Speksnijder","doi":"10.1016/j.anorl.2024.07.005","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The Sunnybrook Facial Grading System (SFGS) is a well-established grading system to assess the severity and progression of a unilateral facial palsy. The automation of the SFGS makes the SFGS more accessible for researchers, students, clinicians in training, or other untrained co-workers and could be implemented in an eHealth environment. This study investigated the impact on the reliability of the automated SFGS by adding a facial landmark layer in a previously developed convolutional neural network (CNN).</p><p><strong>Methods: </strong>An existing dataset of 116 patients with a unilateral peripheral facial palsy and 9 healthy subjects performing the SFGS poses was used to train a CNN with a newly added facial landmark layer. A separate model was trained for each of the 13 elements of the SFGS and then used to calculate the SFGS subscores and composite score. The intra-class coefficient of the automated grading system was calculated based on three clinicians experienced in the grading of facial palsy.</p><p><strong>Results: </strong>The inter-rater reliability of the CNN with the additional facial landmarks increased in performance for all composite scores compared to the previous model. The intra-class coefficient for the composite SFGS score increased from 0.87 to 0.91, the resting symmetry subscore increased from 0.45 to 0.62, the symmetry of voluntary movement subscore increased from 0.89 to 0.92, and the synkinesis subscore increased from 0.75 to 0.78.</p><p><strong>Conclusion: </strong>The integration of a facial landmark layer into the CNN significantly improved the reliability of the automated SFGS, reaching a performance level comparable to human observers. These results were attained without increasing the dataset underscoring the impact of incorporating facial landmarks into a CNN. These findings indicate that the automated SFGS with facial landmarks is a reliable tool for assessing patients with a unilateral peripheral facial palsy and is applicable in an eHealth environment.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of the automated Sunnybrook Facial Grading System - Improving the reliability of a deep learning network with facial landmarks.\",\"authors\":\"T C Ten Harkel, F Bielevelt, H A M Marres, K J A O Ingels, T J J Maal, C M Speksnijder\",\"doi\":\"10.1016/j.anorl.2024.07.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>The Sunnybrook Facial Grading System (SFGS) is a well-established grading system to assess the severity and progression of a unilateral facial palsy. The automation of the SFGS makes the SFGS more accessible for researchers, students, clinicians in training, or other untrained co-workers and could be implemented in an eHealth environment. This study investigated the impact on the reliability of the automated SFGS by adding a facial landmark layer in a previously developed convolutional neural network (CNN).</p><p><strong>Methods: </strong>An existing dataset of 116 patients with a unilateral peripheral facial palsy and 9 healthy subjects performing the SFGS poses was used to train a CNN with a newly added facial landmark layer. A separate model was trained for each of the 13 elements of the SFGS and then used to calculate the SFGS subscores and composite score. The intra-class coefficient of the automated grading system was calculated based on three clinicians experienced in the grading of facial palsy.</p><p><strong>Results: </strong>The inter-rater reliability of the CNN with the additional facial landmarks increased in performance for all composite scores compared to the previous model. The intra-class coefficient for the composite SFGS score increased from 0.87 to 0.91, the resting symmetry subscore increased from 0.45 to 0.62, the symmetry of voluntary movement subscore increased from 0.89 to 0.92, and the synkinesis subscore increased from 0.75 to 0.78.</p><p><strong>Conclusion: </strong>The integration of a facial landmark layer into the CNN significantly improved the reliability of the automated SFGS, reaching a performance level comparable to human observers. These results were attained without increasing the dataset underscoring the impact of incorporating facial landmarks into a CNN. These findings indicate that the automated SFGS with facial landmarks is a reliable tool for assessing patients with a unilateral peripheral facial palsy and is applicable in an eHealth environment.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.anorl.2024.07.005\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.anorl.2024.07.005","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Optimization of the automated Sunnybrook Facial Grading System - Improving the reliability of a deep learning network with facial landmarks.
Objective: The Sunnybrook Facial Grading System (SFGS) is a well-established grading system to assess the severity and progression of a unilateral facial palsy. The automation of the SFGS makes the SFGS more accessible for researchers, students, clinicians in training, or other untrained co-workers and could be implemented in an eHealth environment. This study investigated the impact on the reliability of the automated SFGS by adding a facial landmark layer in a previously developed convolutional neural network (CNN).
Methods: An existing dataset of 116 patients with a unilateral peripheral facial palsy and 9 healthy subjects performing the SFGS poses was used to train a CNN with a newly added facial landmark layer. A separate model was trained for each of the 13 elements of the SFGS and then used to calculate the SFGS subscores and composite score. The intra-class coefficient of the automated grading system was calculated based on three clinicians experienced in the grading of facial palsy.
Results: The inter-rater reliability of the CNN with the additional facial landmarks increased in performance for all composite scores compared to the previous model. The intra-class coefficient for the composite SFGS score increased from 0.87 to 0.91, the resting symmetry subscore increased from 0.45 to 0.62, the symmetry of voluntary movement subscore increased from 0.89 to 0.92, and the synkinesis subscore increased from 0.75 to 0.78.
Conclusion: The integration of a facial landmark layer into the CNN significantly improved the reliability of the automated SFGS, reaching a performance level comparable to human observers. These results were attained without increasing the dataset underscoring the impact of incorporating facial landmarks into a CNN. These findings indicate that the automated SFGS with facial landmarks is a reliable tool for assessing patients with a unilateral peripheral facial palsy and is applicable in an eHealth environment.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.