蛋白酶体抑制通过 NOXA 同时抑制 MCL-1/BCL-XL 引发细胞凋亡,与 CHOP 和 JNK 途径无关。

IF 4.8 3区 医学 Q1 PHARMACOLOGY & PHARMACY
{"title":"蛋白酶体抑制通过 NOXA 同时抑制 MCL-1/BCL-XL 引发细胞凋亡,与 CHOP 和 JNK 途径无关。","authors":"","doi":"10.1016/j.tox.2024.153906","DOIUrl":null,"url":null,"abstract":"<div><p>Proteasome inhibitors have been employed in the treatment of relapsed multiple myeloma and mantle cell lymphoma. The observed toxicity caused by proteasome inhibitors is a universal phenotype in numerous cancer cells with different sensitivity. In this study, we investigate the conserved mechanisms underlying the toxicity of the proteasome inhibitor bortezomib using gene editing approaches. Our findings utilizing different caspase knocking out cells reveal that bortezomib induces classic intrinsic apoptosis by activating caspase-9 and caspase-3/7, leading to pore-forming protein GSDME cleavage and subsequent lytic cell death or called secondary necrosis, a phenotype also observed in many apoptosis triggers like TNFα plus CHX, DTT and tunicamycin treatment in HeLa cells. Furthermore, through knocking out of nearly all BH3-only proteins including BIM, BAD, BID, BMF and PUMA, we demonstrate that NOXA is the sole BH3-only protein responsible for bortezomib-induced apoptosis. Of note, NOXA is well known for selectively binding to MCL-1 and A1, but our studies utilizing different BH3 mimetics as well as immunoprecipitation assays indicate that, except for the constitutive interaction of NOXA with MCL-1, the accumulation of NOXA after bortezomib treatment allows it to interact with BCL-XL, then simultaneous relieving suppression on apoptosis by both anti-apoptotic proteins BCL-XL and MCL-1. In addition, though bortezomib-induced significant ER stress and JNK activation were observed in the study, further genetic depletion experiments prove that bortezomib-induced apoptosis occurs independently of ER stress-related apoptosis factor CHOP and JNK. In summary, these results provide a solid conclusion about the critical role of NOXA in inactivation of BCL-XL except MCL-1 in bortezomib-induced apoptosis.</p></div>","PeriodicalId":23159,"journal":{"name":"Toxicology","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proteasome inhibition induces apoptosis through simultaneous inactivation of MCL-1/BCL-XL by NOXA independent of CHOP and JNK pathways\",\"authors\":\"\",\"doi\":\"10.1016/j.tox.2024.153906\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Proteasome inhibitors have been employed in the treatment of relapsed multiple myeloma and mantle cell lymphoma. The observed toxicity caused by proteasome inhibitors is a universal phenotype in numerous cancer cells with different sensitivity. In this study, we investigate the conserved mechanisms underlying the toxicity of the proteasome inhibitor bortezomib using gene editing approaches. Our findings utilizing different caspase knocking out cells reveal that bortezomib induces classic intrinsic apoptosis by activating caspase-9 and caspase-3/7, leading to pore-forming protein GSDME cleavage and subsequent lytic cell death or called secondary necrosis, a phenotype also observed in many apoptosis triggers like TNFα plus CHX, DTT and tunicamycin treatment in HeLa cells. Furthermore, through knocking out of nearly all BH3-only proteins including BIM, BAD, BID, BMF and PUMA, we demonstrate that NOXA is the sole BH3-only protein responsible for bortezomib-induced apoptosis. Of note, NOXA is well known for selectively binding to MCL-1 and A1, but our studies utilizing different BH3 mimetics as well as immunoprecipitation assays indicate that, except for the constitutive interaction of NOXA with MCL-1, the accumulation of NOXA after bortezomib treatment allows it to interact with BCL-XL, then simultaneous relieving suppression on apoptosis by both anti-apoptotic proteins BCL-XL and MCL-1. In addition, though bortezomib-induced significant ER stress and JNK activation were observed in the study, further genetic depletion experiments prove that bortezomib-induced apoptosis occurs independently of ER stress-related apoptosis factor CHOP and JNK. In summary, these results provide a solid conclusion about the critical role of NOXA in inactivation of BCL-XL except MCL-1 in bortezomib-induced apoptosis.</p></div>\",\"PeriodicalId\":23159,\"journal\":{\"name\":\"Toxicology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0300483X24001872\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0300483X24001872","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

蛋白酶体抑制剂已被用于治疗复发的多发性骨髓瘤和套细胞淋巴瘤。蛋白酶体抑制剂引起的毒性是许多具有不同敏感性的癌细胞的普遍表型。在本研究中,我们利用基因编辑方法研究了蛋白酶体抑制剂硼替佐米毒性的保守机制。我们利用不同的caspase敲除细胞发现,硼替佐米通过激活caspase-9和caspase-3/7诱导典型的内源性凋亡,导致孔形成蛋白GSDME裂解,随后细胞溶解性死亡或称为继发性坏死,这种表型在许多凋亡诱因中也能观察到,如TNFα加CHX、DTT和在HeLa细胞中处理曲卡霉素。此外,通过敲除几乎所有纯 BH3 蛋白(包括 BIM、BAD、BID、BMF 和 PUMA),我们证明 NOXA 是导致硼替佐米诱导细胞凋亡的唯一纯 BH3 蛋白。值得注意的是,众所周知,NOXA可选择性地与MCL-1和A1结合,但我们利用不同的BH3模拟物以及免疫沉淀试验进行的研究表明,除了NOXA与MCL-1的组成性相互作用外,硼替佐米治疗后NOXA的积累可使其与BCL-XL相互作用,从而同时缓解抗凋亡蛋白BCL-XL和MCL-1对细胞凋亡的抑制。此外,虽然研究中观察到硼替佐米诱导了显著的 ER 应激和 JNK 激活,但进一步的基因耗竭实验证明,硼替佐米诱导的细胞凋亡与 ER 应激相关的细胞凋亡因子 CHOP 和 JNK 无关。总之,这些结果提供了一个可靠的结论,即在硼替佐米诱导的细胞凋亡中,NOXA 在除 MCL-1 之外的 BCL-XL 失活中起着关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Proteasome inhibition induces apoptosis through simultaneous inactivation of MCL-1/BCL-XL by NOXA independent of CHOP and JNK pathways

Proteasome inhibitors have been employed in the treatment of relapsed multiple myeloma and mantle cell lymphoma. The observed toxicity caused by proteasome inhibitors is a universal phenotype in numerous cancer cells with different sensitivity. In this study, we investigate the conserved mechanisms underlying the toxicity of the proteasome inhibitor bortezomib using gene editing approaches. Our findings utilizing different caspase knocking out cells reveal that bortezomib induces classic intrinsic apoptosis by activating caspase-9 and caspase-3/7, leading to pore-forming protein GSDME cleavage and subsequent lytic cell death or called secondary necrosis, a phenotype also observed in many apoptosis triggers like TNFα plus CHX, DTT and tunicamycin treatment in HeLa cells. Furthermore, through knocking out of nearly all BH3-only proteins including BIM, BAD, BID, BMF and PUMA, we demonstrate that NOXA is the sole BH3-only protein responsible for bortezomib-induced apoptosis. Of note, NOXA is well known for selectively binding to MCL-1 and A1, but our studies utilizing different BH3 mimetics as well as immunoprecipitation assays indicate that, except for the constitutive interaction of NOXA with MCL-1, the accumulation of NOXA after bortezomib treatment allows it to interact with BCL-XL, then simultaneous relieving suppression on apoptosis by both anti-apoptotic proteins BCL-XL and MCL-1. In addition, though bortezomib-induced significant ER stress and JNK activation were observed in the study, further genetic depletion experiments prove that bortezomib-induced apoptosis occurs independently of ER stress-related apoptosis factor CHOP and JNK. In summary, these results provide a solid conclusion about the critical role of NOXA in inactivation of BCL-XL except MCL-1 in bortezomib-induced apoptosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Toxicology
Toxicology 医学-毒理学
CiteScore
7.80
自引率
4.40%
发文量
222
审稿时长
23 days
期刊介绍: Toxicology is an international, peer-reviewed journal that publishes only the highest quality original scientific research and critical reviews describing hypothesis-based investigations into mechanisms of toxicity associated with exposures to xenobiotic chemicals, particularly as it relates to human health. In this respect "mechanisms" is defined on both the macro (e.g. physiological, biological, kinetic, species, sex, etc.) and molecular (genomic, transcriptomic, metabolic, etc.) scale. Emphasis is placed on findings that identify novel hazards and that can be extrapolated to exposures and mechanisms that are relevant to estimating human risk. Toxicology also publishes brief communications, personal commentaries and opinion articles, as well as concise expert reviews on contemporary topics. All research and review articles published in Toxicology are subject to rigorous peer review. Authors are asked to contact the Editor-in-Chief prior to submitting review articles or commentaries for consideration for publication in Toxicology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信