克级固态材料的闪中闪合成。

IF 19.2 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Chi Hun ‘William’ Choi, Jaeho Shin, Lucas Eddy, Victoria Granja, Kevin M. Wyss, Bárbara Damasceno, Hua Guo, Guanhui Gao, Yufeng Zhao, C. Fred Higgs III, Yimo Han, James M. Tour
{"title":"克级固态材料的闪中闪合成。","authors":"Chi Hun ‘William’ Choi, Jaeho Shin, Lucas Eddy, Victoria Granja, Kevin M. Wyss, Bárbara Damasceno, Hua Guo, Guanhui Gao, Yufeng Zhao, C. Fred Higgs III, Yimo Han, James M. Tour","doi":"10.1038/s41557-024-01598-7","DOIUrl":null,"url":null,"abstract":"Sustainable manufacturing that prioritizes energy efficiency, minimal water use, scalability and the ability to generate diverse materials is essential to advance inorganic materials production while maintaining environmental consciousness. However, current manufacturing practices are not yet equipped to fully meet these requirements. Here we describe a flash-within-flash Joule heating (FWF) technique—a non-equilibrium, ultrafast heat conduction method—to prepare ten transition metal dichalcogenides, three group XIV dichalcogenides and nine non-transition metal dichalcogenide materials, each in under 5 s while in ambient conditions. FWF achieves enormous advantages in facile gram scalability and in sustainable manufacturing criteria when compared with other synthesis methods. Also, FWF allows the production of phase-selective and single-crystalline bulk powders, a phenomenon rarely observed by any other synthesis method. Furthermore, FWF MoSe2 outperformed commercially available MoSe2 in tribology, showcasing the quality of FWF materials. The capability for atom substitution and doping further highlights the versatility of FWF as a general bulk inorganic materials synthesis protocol. The scalable, energy-efficient and environmentally friendly production of solid-state materials is crucial for next-generation material synthesis. Now an efficient and gram-scale synthesis of transition metal dichalcogenides, group XIV dichalcogenides and non-transition metal dichalcogenides has been achieved using the flash-within-flash heating technique, a non-equilibrium, ultrafast heat conduction method.","PeriodicalId":18909,"journal":{"name":"Nature chemistry","volume":null,"pages":null},"PeriodicalIF":19.2000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flash-within-flash synthesis of gram-scale solid-state materials\",\"authors\":\"Chi Hun ‘William’ Choi, Jaeho Shin, Lucas Eddy, Victoria Granja, Kevin M. Wyss, Bárbara Damasceno, Hua Guo, Guanhui Gao, Yufeng Zhao, C. Fred Higgs III, Yimo Han, James M. Tour\",\"doi\":\"10.1038/s41557-024-01598-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sustainable manufacturing that prioritizes energy efficiency, minimal water use, scalability and the ability to generate diverse materials is essential to advance inorganic materials production while maintaining environmental consciousness. However, current manufacturing practices are not yet equipped to fully meet these requirements. Here we describe a flash-within-flash Joule heating (FWF) technique—a non-equilibrium, ultrafast heat conduction method—to prepare ten transition metal dichalcogenides, three group XIV dichalcogenides and nine non-transition metal dichalcogenide materials, each in under 5 s while in ambient conditions. FWF achieves enormous advantages in facile gram scalability and in sustainable manufacturing criteria when compared with other synthesis methods. Also, FWF allows the production of phase-selective and single-crystalline bulk powders, a phenomenon rarely observed by any other synthesis method. Furthermore, FWF MoSe2 outperformed commercially available MoSe2 in tribology, showcasing the quality of FWF materials. The capability for atom substitution and doping further highlights the versatility of FWF as a general bulk inorganic materials synthesis protocol. The scalable, energy-efficient and environmentally friendly production of solid-state materials is crucial for next-generation material synthesis. Now an efficient and gram-scale synthesis of transition metal dichalcogenides, group XIV dichalcogenides and non-transition metal dichalcogenides has been achieved using the flash-within-flash heating technique, a non-equilibrium, ultrafast heat conduction method.\",\"PeriodicalId\":18909,\"journal\":{\"name\":\"Nature chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":19.2000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.nature.com/articles/s41557-024-01598-7\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s41557-024-01598-7","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在保持环保意识的同时,优先考虑能源效率、最小用水量、可扩展性和生成多样化材料的能力的可持续生产对于推进无机材料生产至关重要。然而,目前的生产实践还不能完全满足这些要求。在这里,我们介绍了一种闪中闪焦耳加热(FWF)技术--一种非平衡、超快的热传导方法--在环境条件下,在 5 秒内制备出 10 种过渡金属二钙化物、3 种第 XIV 族二钙化物和 9 种非过渡金属二钙化物材料。与其他合成方法相比,FWF 在快速克级扩展性和可持续生产标准方面具有巨大优势。此外,FWF 还能生产出相选择性和单晶块状粉末,这是其他合成方法很少能观察到的现象。此外,FWF MoSe2 在摩擦学方面的性能优于市售的 MoSe2,展示了 FWF 材料的品质。原子置换和掺杂能力进一步凸显了 FWF 作为通用块状无机材料合成方案的多功能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Flash-within-flash synthesis of gram-scale solid-state materials

Flash-within-flash synthesis of gram-scale solid-state materials

Flash-within-flash synthesis of gram-scale solid-state materials
Sustainable manufacturing that prioritizes energy efficiency, minimal water use, scalability and the ability to generate diverse materials is essential to advance inorganic materials production while maintaining environmental consciousness. However, current manufacturing practices are not yet equipped to fully meet these requirements. Here we describe a flash-within-flash Joule heating (FWF) technique—a non-equilibrium, ultrafast heat conduction method—to prepare ten transition metal dichalcogenides, three group XIV dichalcogenides and nine non-transition metal dichalcogenide materials, each in under 5 s while in ambient conditions. FWF achieves enormous advantages in facile gram scalability and in sustainable manufacturing criteria when compared with other synthesis methods. Also, FWF allows the production of phase-selective and single-crystalline bulk powders, a phenomenon rarely observed by any other synthesis method. Furthermore, FWF MoSe2 outperformed commercially available MoSe2 in tribology, showcasing the quality of FWF materials. The capability for atom substitution and doping further highlights the versatility of FWF as a general bulk inorganic materials synthesis protocol. The scalable, energy-efficient and environmentally friendly production of solid-state materials is crucial for next-generation material synthesis. Now an efficient and gram-scale synthesis of transition metal dichalcogenides, group XIV dichalcogenides and non-transition metal dichalcogenides has been achieved using the flash-within-flash heating technique, a non-equilibrium, ultrafast heat conduction method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature chemistry
Nature chemistry 化学-化学综合
CiteScore
29.60
自引率
1.40%
发文量
226
审稿时长
1.7 months
期刊介绍: Nature Chemistry is a monthly journal that publishes groundbreaking and significant research in all areas of chemistry. It covers traditional subjects such as analytical, inorganic, organic, and physical chemistry, as well as a wide range of other topics including catalysis, computational and theoretical chemistry, and environmental chemistry. The journal also features interdisciplinary research at the interface of chemistry with biology, materials science, nanotechnology, and physics. Manuscripts detailing such multidisciplinary work are encouraged, as long as the central theme pertains to chemistry. Aside from primary research, Nature Chemistry publishes review articles, news and views, research highlights from other journals, commentaries, book reviews, correspondence, and analysis of the broader chemical landscape. It also addresses crucial issues related to education, funding, policy, intellectual property, and the societal impact of chemistry. Nature Chemistry is dedicated to ensuring the highest standards of original research through a fair and rigorous review process. It offers authors maximum visibility for their papers, access to a broad readership, exceptional copy editing and production standards, rapid publication, and independence from academic societies and other vested interests. Overall, Nature Chemistry aims to be the authoritative voice of the global chemical community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信