Yi Xiong, Ryan S Mueller, Shichao Feng, Xuan Guo, Chongle Pan
{"title":"利用升级版 Sipros 算法进行蛋白质组稳定同位素探测,改进同位素标记蛋白质的鉴定和定量。","authors":"Yi Xiong, Ryan S Mueller, Shichao Feng, Xuan Guo, Chongle Pan","doi":"10.1186/s40168-024-01866-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Proteomic stable isotope probing (SIP) is used in microbial ecology to trace a non-radioactive isotope from a labeled substrate into de novo synthesized proteins in specific populations that are actively assimilating and metabolizing the substrate in a complex microbial community. The Sipros algorithm is used in proteomic SIP to identify variably labeled proteins and quantify their isotopic enrichment levels (atom%) by performing enrichment-resolved database searching.</p><p><strong>Results: </strong>In this study, Sipros was upgraded to improve the labeled protein identification, isotopic enrichment quantification, and database searching speed. The new Sipros 4 was compared with the existing Sipros 3, Calisp, and MetaProSIP in terms of the number of identifications and the accuracy and precision of atom% quantification on both the peptide and protein levels using standard E. coli cultures with 1.07 atom%, 2 atom%, 5 atom%, 25 atom%, 50 atom%, and 99 atom% <sup>13</sup>C enrichment. Sipros 4 outperformed Calisp and MetaProSIP across all samples, especially in samples with ≥ 5 atom% <sup>13</sup>C labeling. The computational speed on Sipros 4 was > 20 times higher than Sipros 3 and was on par with the overall speed of Calisp- and MetaProSIP-based pipelines. Sipros 4 also demonstrated higher sensitivity for the detection of labeled proteins in two <sup>13</sup>C-SIP experiments on a real-world soil community. The labeled proteins were used to trace <sup>13</sup>C from <sup>13</sup>C-methanol and <sup>13</sup>C-labeled plant exudates to the consuming soil microorganisms and their newly synthesized proteins.</p><p><strong>Conclusion: </strong>Overall, Sipros 4 improved the quality of the proteomic SIP results and reduced the computational cost of SIP database searching, which will make proteomic SIP more useful and accessible to the border community. Video Abstract.</p>","PeriodicalId":18447,"journal":{"name":"Microbiome","volume":"12 1","pages":"148"},"PeriodicalIF":13.8000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11313024/pdf/","citationCount":"0","resultStr":"{\"title\":\"Proteomic stable isotope probing with an upgraded Sipros algorithm for improved identification and quantification of isotopically labeled proteins.\",\"authors\":\"Yi Xiong, Ryan S Mueller, Shichao Feng, Xuan Guo, Chongle Pan\",\"doi\":\"10.1186/s40168-024-01866-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Proteomic stable isotope probing (SIP) is used in microbial ecology to trace a non-radioactive isotope from a labeled substrate into de novo synthesized proteins in specific populations that are actively assimilating and metabolizing the substrate in a complex microbial community. The Sipros algorithm is used in proteomic SIP to identify variably labeled proteins and quantify their isotopic enrichment levels (atom%) by performing enrichment-resolved database searching.</p><p><strong>Results: </strong>In this study, Sipros was upgraded to improve the labeled protein identification, isotopic enrichment quantification, and database searching speed. The new Sipros 4 was compared with the existing Sipros 3, Calisp, and MetaProSIP in terms of the number of identifications and the accuracy and precision of atom% quantification on both the peptide and protein levels using standard E. coli cultures with 1.07 atom%, 2 atom%, 5 atom%, 25 atom%, 50 atom%, and 99 atom% <sup>13</sup>C enrichment. Sipros 4 outperformed Calisp and MetaProSIP across all samples, especially in samples with ≥ 5 atom% <sup>13</sup>C labeling. The computational speed on Sipros 4 was > 20 times higher than Sipros 3 and was on par with the overall speed of Calisp- and MetaProSIP-based pipelines. Sipros 4 also demonstrated higher sensitivity for the detection of labeled proteins in two <sup>13</sup>C-SIP experiments on a real-world soil community. The labeled proteins were used to trace <sup>13</sup>C from <sup>13</sup>C-methanol and <sup>13</sup>C-labeled plant exudates to the consuming soil microorganisms and their newly synthesized proteins.</p><p><strong>Conclusion: </strong>Overall, Sipros 4 improved the quality of the proteomic SIP results and reduced the computational cost of SIP database searching, which will make proteomic SIP more useful and accessible to the border community. Video Abstract.</p>\",\"PeriodicalId\":18447,\"journal\":{\"name\":\"Microbiome\",\"volume\":\"12 1\",\"pages\":\"148\"},\"PeriodicalIF\":13.8000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11313024/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbiome\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s40168-024-01866-1\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40168-024-01866-1","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Proteomic stable isotope probing with an upgraded Sipros algorithm for improved identification and quantification of isotopically labeled proteins.
Background: Proteomic stable isotope probing (SIP) is used in microbial ecology to trace a non-radioactive isotope from a labeled substrate into de novo synthesized proteins in specific populations that are actively assimilating and metabolizing the substrate in a complex microbial community. The Sipros algorithm is used in proteomic SIP to identify variably labeled proteins and quantify their isotopic enrichment levels (atom%) by performing enrichment-resolved database searching.
Results: In this study, Sipros was upgraded to improve the labeled protein identification, isotopic enrichment quantification, and database searching speed. The new Sipros 4 was compared with the existing Sipros 3, Calisp, and MetaProSIP in terms of the number of identifications and the accuracy and precision of atom% quantification on both the peptide and protein levels using standard E. coli cultures with 1.07 atom%, 2 atom%, 5 atom%, 25 atom%, 50 atom%, and 99 atom% 13C enrichment. Sipros 4 outperformed Calisp and MetaProSIP across all samples, especially in samples with ≥ 5 atom% 13C labeling. The computational speed on Sipros 4 was > 20 times higher than Sipros 3 and was on par with the overall speed of Calisp- and MetaProSIP-based pipelines. Sipros 4 also demonstrated higher sensitivity for the detection of labeled proteins in two 13C-SIP experiments on a real-world soil community. The labeled proteins were used to trace 13C from 13C-methanol and 13C-labeled plant exudates to the consuming soil microorganisms and their newly synthesized proteins.
Conclusion: Overall, Sipros 4 improved the quality of the proteomic SIP results and reduced the computational cost of SIP database searching, which will make proteomic SIP more useful and accessible to the border community. Video Abstract.
期刊介绍:
Microbiome is a journal that focuses on studies of microbiomes in humans, animals, plants, and the environment. It covers both natural and manipulated microbiomes, such as those in agriculture. The journal is interested in research that uses meta-omics approaches or novel bioinformatics tools and emphasizes the community/host interaction and structure-function relationship within the microbiome. Studies that go beyond descriptive omics surveys and include experimental or theoretical approaches will be considered for publication. The journal also encourages research that establishes cause and effect relationships and supports proposed microbiome functions. However, studies of individual microbial isolates/species without exploring their impact on the host or the complex microbiome structures and functions will not be considered for publication. Microbiome is indexed in BIOSIS, Current Contents, DOAJ, Embase, MEDLINE, PubMed, PubMed Central, and Science Citations Index Expanded.