IL-17B 通过抑制 FASN 介导的 B 细胞分化来缓解系统性红斑狼疮的发病机制。

IF 6.3 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Yucai Xiao, Yuxin Hu, Yangzhe Gao, Lin Wang, Lili Zhang, Qun Ma, Zhaochen Ning, Lu Yu, Haochen Li, Jiakun Liu, Junyu Wang, Yonghong Yang, Huabao Xiong, Guanjun Dong
{"title":"IL-17B 通过抑制 FASN 介导的 B 细胞分化来缓解系统性红斑狼疮的发病机制。","authors":"Yucai Xiao, Yuxin Hu, Yangzhe Gao, Lin Wang, Lili Zhang, Qun Ma, Zhaochen Ning, Lu Yu, Haochen Li, Jiakun Liu, Junyu Wang, Yonghong Yang, Huabao Xiong, Guanjun Dong","doi":"10.1172/jci.insight.181906","DOIUrl":null,"url":null,"abstract":"<p><p>The interleukin 17 (IL-17) family of cytokines has emerged as a critical player in autoimmune disease, including systemic lupus erythematosus (SLE). However, the role of IL-17B, a poorly understood cytokine, in the pathogenesis of SLE is still not known. In this study, we investigated the role of IL-17B in the activation and differentiation of B cells, and the pathogenesis of SLE. Intriguingly, IL-17B deficiency aggravated disease in lupus-prone mice and promoted the activation of B cells and the differentiation of germinal center B cells and plasma cells, while recombinant mouse IL-17B (rmIL-17B) significantly alleviated disease in lupus-prone mice. Mechanistically, rmIL-17B inhibited the activation of the Toll-like receptor and interferon pathways in B cells by downregulating fatty acid synthase-mediated (FASN-mediated) lipid metabolism. Loss of FASN significantly alleviated the disease in lupus-prone mice and inhibited the activation and differentiation of B cells. In addition, B cells had greater FASN expression and lower IL-17RB levels in patients with SLE than in healthy controls. Our study describes the role of IL-17B in regulating B cell activation and differentiation, and alleviating the onset of SLE. These findings will lay a theoretical foundation for further understanding of the pathogenesis of SLE.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457847/pdf/","citationCount":"0","resultStr":"{\"title\":\"IL-17B alleviates the pathogenesis of systemic lupus erythematosus by inhibiting FASN-mediated differentiation of B cells.\",\"authors\":\"Yucai Xiao, Yuxin Hu, Yangzhe Gao, Lin Wang, Lili Zhang, Qun Ma, Zhaochen Ning, Lu Yu, Haochen Li, Jiakun Liu, Junyu Wang, Yonghong Yang, Huabao Xiong, Guanjun Dong\",\"doi\":\"10.1172/jci.insight.181906\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The interleukin 17 (IL-17) family of cytokines has emerged as a critical player in autoimmune disease, including systemic lupus erythematosus (SLE). However, the role of IL-17B, a poorly understood cytokine, in the pathogenesis of SLE is still not known. In this study, we investigated the role of IL-17B in the activation and differentiation of B cells, and the pathogenesis of SLE. Intriguingly, IL-17B deficiency aggravated disease in lupus-prone mice and promoted the activation of B cells and the differentiation of germinal center B cells and plasma cells, while recombinant mouse IL-17B (rmIL-17B) significantly alleviated disease in lupus-prone mice. Mechanistically, rmIL-17B inhibited the activation of the Toll-like receptor and interferon pathways in B cells by downregulating fatty acid synthase-mediated (FASN-mediated) lipid metabolism. Loss of FASN significantly alleviated the disease in lupus-prone mice and inhibited the activation and differentiation of B cells. In addition, B cells had greater FASN expression and lower IL-17RB levels in patients with SLE than in healthy controls. Our study describes the role of IL-17B in regulating B cell activation and differentiation, and alleviating the onset of SLE. These findings will lay a theoretical foundation for further understanding of the pathogenesis of SLE.</p>\",\"PeriodicalId\":14722,\"journal\":{\"name\":\"JCI insight\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457847/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JCI insight\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1172/jci.insight.181906\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCI insight","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/jci.insight.181906","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

白细胞介素-17(IL-17)家族细胞因子已成为自身免疫性疾病(包括系统性红斑狼疮)的关键因素。然而,IL-17B 这种鲜为人知的细胞因子在系统性红斑狼疮发病机制中的作用仍不明确。在这项研究中,我们探讨了 IL-17B 在 B 细胞活化和分化以及系统性红斑狼疮发病机制中的作用。有趣的是,IL-17B缺乏会加重狼疮易感小鼠的病情,并促进B细胞的活化和生殖中心(GC)B细胞及浆细胞的分化,而重组小鼠IL-17B(rmIL-17B)则能显著缓解狼疮易感小鼠的病情。从机理上讲,rmIL-17B 通过下调 FASN 介导的脂质代谢,抑制了 B 细胞中 Toll 样受体(TLR)和干扰素(IFN)通路的激活。FASN的缺失能明显缓解红斑狼疮易感小鼠的病情,并抑制B细胞的活化和分化。此外,与健康对照组相比,系统性红斑狼疮患者的 B 细胞中 FASN 表达更多,IL-17RB 水平更低。我们的研究描述了 IL-17B 在调节 B 细胞活化和分化以及缓解系统性红斑狼疮发病方面的作用。这些发现将为进一步了解系统性红斑狼疮的发病机制奠定理论基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
IL-17B alleviates the pathogenesis of systemic lupus erythematosus by inhibiting FASN-mediated differentiation of B cells.

The interleukin 17 (IL-17) family of cytokines has emerged as a critical player in autoimmune disease, including systemic lupus erythematosus (SLE). However, the role of IL-17B, a poorly understood cytokine, in the pathogenesis of SLE is still not known. In this study, we investigated the role of IL-17B in the activation and differentiation of B cells, and the pathogenesis of SLE. Intriguingly, IL-17B deficiency aggravated disease in lupus-prone mice and promoted the activation of B cells and the differentiation of germinal center B cells and plasma cells, while recombinant mouse IL-17B (rmIL-17B) significantly alleviated disease in lupus-prone mice. Mechanistically, rmIL-17B inhibited the activation of the Toll-like receptor and interferon pathways in B cells by downregulating fatty acid synthase-mediated (FASN-mediated) lipid metabolism. Loss of FASN significantly alleviated the disease in lupus-prone mice and inhibited the activation and differentiation of B cells. In addition, B cells had greater FASN expression and lower IL-17RB levels in patients with SLE than in healthy controls. Our study describes the role of IL-17B in regulating B cell activation and differentiation, and alleviating the onset of SLE. These findings will lay a theoretical foundation for further understanding of the pathogenesis of SLE.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
JCI insight
JCI insight Medicine-General Medicine
CiteScore
13.70
自引率
1.20%
发文量
543
审稿时长
6 weeks
期刊介绍: JCI Insight is a Gold Open Access journal with a 2022 Impact Factor of 8.0. It publishes high-quality studies in various biomedical specialties, such as autoimmunity, gastroenterology, immunology, metabolism, nephrology, neuroscience, oncology, pulmonology, and vascular biology. The journal focuses on clinically relevant basic and translational research that contributes to the understanding of disease biology and treatment. JCI Insight is self-published by the American Society for Clinical Investigation (ASCI), a nonprofit honor organization of physician-scientists founded in 1908, and it helps fulfill the ASCI's mission to advance medical science through the publication of clinically relevant research reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信