{"title":"百日咳杆菌的外质结合蛋白 Bug69 和 Bug27 是体外高亲和力喹啉酸结合蛋白,可能在 NAD 生物合成中发挥作用。","authors":"Leonardo Sorci, Gabriele Minazzato, Adolfo Amici, Francesca Mazzola, Nadia Raffaelli","doi":"10.1002/2211-5463.13876","DOIUrl":null,"url":null,"abstract":"<p><i>Bordetella</i>'s genome contains a large family of periplasmic binding proteins (PBPs) known as Bugs, whose functions are mainly unassigned. Two members, Bug27 and Bug69, have previously been considered potential candidates for the uptake of small pyridine precursors, possibly linked to NAD biosynthesis. Here, we show an <i>in vitro</i> affinity of Bug27 and Bug69 for quinolinate in the submicromolar range, with a marked preference over other NAD precursors. A combined sequence similarity network and genome context analysis identifies a cluster of Bug69/27 homologs that are genomically associated with the NAD transcriptional regulator NadQ and the enzyme quinolinate phosphoribosyltransferase (QaPRT, gene <i>nadC</i>), suggesting a functional linkage to NAD metabolism. Integrating molecular docking and structure-based multiple alignments confirms that quinolinate is the preferred ligand for Bug27 and Bug69.</p>","PeriodicalId":12187,"journal":{"name":"FEBS Open Bio","volume":"14 10","pages":"1718-1730"},"PeriodicalIF":2.8000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11452294/pdf/","citationCount":"0","resultStr":"{\"title\":\"Periplasmic binding proteins Bug69 and Bug27 from Bordetella pertussis are in vitro high-affinity quinolinate binders with a potential role in NAD biosynthesis\",\"authors\":\"Leonardo Sorci, Gabriele Minazzato, Adolfo Amici, Francesca Mazzola, Nadia Raffaelli\",\"doi\":\"10.1002/2211-5463.13876\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><i>Bordetella</i>'s genome contains a large family of periplasmic binding proteins (PBPs) known as Bugs, whose functions are mainly unassigned. Two members, Bug27 and Bug69, have previously been considered potential candidates for the uptake of small pyridine precursors, possibly linked to NAD biosynthesis. Here, we show an <i>in vitro</i> affinity of Bug27 and Bug69 for quinolinate in the submicromolar range, with a marked preference over other NAD precursors. A combined sequence similarity network and genome context analysis identifies a cluster of Bug69/27 homologs that are genomically associated with the NAD transcriptional regulator NadQ and the enzyme quinolinate phosphoribosyltransferase (QaPRT, gene <i>nadC</i>), suggesting a functional linkage to NAD metabolism. Integrating molecular docking and structure-based multiple alignments confirms that quinolinate is the preferred ligand for Bug27 and Bug69.</p>\",\"PeriodicalId\":12187,\"journal\":{\"name\":\"FEBS Open Bio\",\"volume\":\"14 10\",\"pages\":\"1718-1730\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11452294/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FEBS Open Bio\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/2211-5463.13876\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEBS Open Bio","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/2211-5463.13876","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
博德特氏菌的基因组包含一个庞大的外质结合蛋白(PBPs)家族,被称为 "虫"(Bugs),其功能主要尚未确定。Bug27 和 Bug69 这两个成员以前曾被认为是吸收小型吡啶前体的潜在候选者,可能与 NAD 的生物合成有关。在这里,我们展示了 Bug27 和 Bug69 在亚微摩范围内对喹啉酸的体外亲和力,它们对其他 NAD 前体有明显的偏好。结合序列相似性网络和基因组上下文分析,我们发现了一组与 NAD 转录调节因子 NadQ 和喹啉酸磷酸核糖基转移酶(QaPRT,基因 nadC)有基因组关联的 Bug69/27 同源物,这表明它们与 NAD 代谢有功能上的联系。综合分子对接和基于结构的多重比对证实,喹啉酸盐是 Bug27 和 Bug69 的首选配体。
Periplasmic binding proteins Bug69 and Bug27 from Bordetella pertussis are in vitro high-affinity quinolinate binders with a potential role in NAD biosynthesis
Bordetella's genome contains a large family of periplasmic binding proteins (PBPs) known as Bugs, whose functions are mainly unassigned. Two members, Bug27 and Bug69, have previously been considered potential candidates for the uptake of small pyridine precursors, possibly linked to NAD biosynthesis. Here, we show an in vitro affinity of Bug27 and Bug69 for quinolinate in the submicromolar range, with a marked preference over other NAD precursors. A combined sequence similarity network and genome context analysis identifies a cluster of Bug69/27 homologs that are genomically associated with the NAD transcriptional regulator NadQ and the enzyme quinolinate phosphoribosyltransferase (QaPRT, gene nadC), suggesting a functional linkage to NAD metabolism. Integrating molecular docking and structure-based multiple alignments confirms that quinolinate is the preferred ligand for Bug27 and Bug69.
期刊介绍:
FEBS Open Bio is an online-only open access journal for the rapid publication of research articles in molecular and cellular life sciences in both health and disease. The journal''s peer review process focuses on the technical soundness of papers, leaving the assessment of their impact and importance to the scientific community.
FEBS Open Bio is owned by the Federation of European Biochemical Societies (FEBS), a not-for-profit organization, and is published on behalf of FEBS by FEBS Press and Wiley. Any income from the journal will be used to support scientists through fellowships, courses, travel grants, prizes and other FEBS initiatives.