体液特异性 DNA 甲基化标记的 SNaPshot 和大规模平行测序比较分析。

IF 3 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS
Bo Min Kim, Sang Un Park, Hwan Young Lee
{"title":"体液特异性 DNA 甲基化标记的 SNaPshot 和大规模平行测序比较分析。","authors":"Bo Min Kim,&nbsp;Sang Un Park,&nbsp;Hwan Young Lee","doi":"10.1002/elps.202400037","DOIUrl":null,"url":null,"abstract":"<p>The identification of tissue-specific differentially methylated regions has significantly contributed to the field of forensic genetics, particularly in body fluid identification crucial for linking evidence to crimes. Among the various approaches to analyzing DNA methylation, the SNaPshot assay has been popularly studied in numerous researches. However, there is a growing interest in exploring alternative methods such as the use of massively parallel sequencing (MPS), which can process a large number of samples simultaneously. This study compares SNaPshot and MPS multiplex assays using nine cytosine-phosphate-guanine markers for body fluid identification. As a result of analyzing 112 samples, including blood, saliva, vaginal fluid, menstrual blood, and semen, both methods demonstrated high sensitivity and specificity, indicating their reliability in forensic investigations. A total of 92.0% samples were correctly identified by both methods. Although both methods accurately identified all blood, saliva, and semen samples, some vaginal fluid samples showed unexpected methylation signals at nontarget loci in addition to the target loci. In the case of menstrual blood samples, due to their complexity, independent typing criteria were applied, and successful menstrual blood typing was possible, whereas a few samples showed profiles similar to vaginal fluid. The MPS method worked better in vaginal fluid samples, and the SNaPshot method performed better in menstrual blood samples. This study offers valuable insights into body fluid identification based on the characteristics of the SNaPshot and MPS methods, which may help in more efficient forensic applications.</p>","PeriodicalId":11596,"journal":{"name":"ELECTROPHORESIS","volume":"45 19-20","pages":"1805-1819"},"PeriodicalIF":3.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elps.202400037","citationCount":"0","resultStr":"{\"title\":\"Comparative analysis of SNaPshot and massively parallel sequencing for body fluid–specific DNA methylation markers\",\"authors\":\"Bo Min Kim,&nbsp;Sang Un Park,&nbsp;Hwan Young Lee\",\"doi\":\"10.1002/elps.202400037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The identification of tissue-specific differentially methylated regions has significantly contributed to the field of forensic genetics, particularly in body fluid identification crucial for linking evidence to crimes. Among the various approaches to analyzing DNA methylation, the SNaPshot assay has been popularly studied in numerous researches. However, there is a growing interest in exploring alternative methods such as the use of massively parallel sequencing (MPS), which can process a large number of samples simultaneously. This study compares SNaPshot and MPS multiplex assays using nine cytosine-phosphate-guanine markers for body fluid identification. As a result of analyzing 112 samples, including blood, saliva, vaginal fluid, menstrual blood, and semen, both methods demonstrated high sensitivity and specificity, indicating their reliability in forensic investigations. A total of 92.0% samples were correctly identified by both methods. Although both methods accurately identified all blood, saliva, and semen samples, some vaginal fluid samples showed unexpected methylation signals at nontarget loci in addition to the target loci. In the case of menstrual blood samples, due to their complexity, independent typing criteria were applied, and successful menstrual blood typing was possible, whereas a few samples showed profiles similar to vaginal fluid. The MPS method worked better in vaginal fluid samples, and the SNaPshot method performed better in menstrual blood samples. This study offers valuable insights into body fluid identification based on the characteristics of the SNaPshot and MPS methods, which may help in more efficient forensic applications.</p>\",\"PeriodicalId\":11596,\"journal\":{\"name\":\"ELECTROPHORESIS\",\"volume\":\"45 19-20\",\"pages\":\"1805-1819\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elps.202400037\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ELECTROPHORESIS\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/elps.202400037\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ELECTROPHORESIS","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/elps.202400037","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

对组织特异性差异甲基化区域的鉴定极大地促进了法医遗传学领域的发展,尤其是在对犯罪证据至关重要的体液鉴定方面。在分析 DNA 甲基化的各种方法中,SNaPshot 分析法已在许多研究中得到广泛应用。然而,人们对探索其他方法的兴趣日益浓厚,如使用大规模平行测序(MPS),这种方法可以同时处理大量样本。本研究比较了使用九种胞嘧啶-磷酸鸟嘌呤标记物进行体液鉴定的 SNaPshot 和 MPS 多重检测方法。在对 112 份样本(包括血液、唾液、阴道分泌物、经血和精液)进行分析后,两种方法均显示出较高的灵敏度和特异性,表明其在法医调查中的可靠性。两种方法共正确识别了 92.0% 的样本。虽然两种方法都能准确鉴定所有血液、唾液和精液样本,但一些阴道液样本除了目标位点外,还在非目标位点上出现了意想不到的甲基化信号。对于月经血样本,由于其复杂性,采用了独立的分型标准,成功地对月经血进行了分型,而少数样本显示出与阴道液相似的特征。MPS 方法在阴道液样本中效果更好,而 SNaPshot 方法在经血样本中效果更好。这项研究根据 SNaPshot 和 MPS 方法的特点为体液鉴定提供了宝贵的见解,可能有助于更有效的法医应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Comparative analysis of SNaPshot and massively parallel sequencing for body fluid–specific DNA methylation markers

Comparative analysis of SNaPshot and massively parallel sequencing for body fluid–specific DNA methylation markers

The identification of tissue-specific differentially methylated regions has significantly contributed to the field of forensic genetics, particularly in body fluid identification crucial for linking evidence to crimes. Among the various approaches to analyzing DNA methylation, the SNaPshot assay has been popularly studied in numerous researches. However, there is a growing interest in exploring alternative methods such as the use of massively parallel sequencing (MPS), which can process a large number of samples simultaneously. This study compares SNaPshot and MPS multiplex assays using nine cytosine-phosphate-guanine markers for body fluid identification. As a result of analyzing 112 samples, including blood, saliva, vaginal fluid, menstrual blood, and semen, both methods demonstrated high sensitivity and specificity, indicating their reliability in forensic investigations. A total of 92.0% samples were correctly identified by both methods. Although both methods accurately identified all blood, saliva, and semen samples, some vaginal fluid samples showed unexpected methylation signals at nontarget loci in addition to the target loci. In the case of menstrual blood samples, due to their complexity, independent typing criteria were applied, and successful menstrual blood typing was possible, whereas a few samples showed profiles similar to vaginal fluid. The MPS method worked better in vaginal fluid samples, and the SNaPshot method performed better in menstrual blood samples. This study offers valuable insights into body fluid identification based on the characteristics of the SNaPshot and MPS methods, which may help in more efficient forensic applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ELECTROPHORESIS
ELECTROPHORESIS 生物-分析化学
CiteScore
6.30
自引率
13.80%
发文量
244
审稿时长
1.9 months
期刊介绍: ELECTROPHORESIS is an international journal that publishes original manuscripts on all aspects of electrophoresis, and liquid phase separations (e.g., HPLC, micro- and nano-LC, UHPLC, micro- and nano-fluidics, liquid-phase micro-extractions, etc.). Topics include new or improved analytical and preparative methods, sample preparation, development of theory, and innovative applications of electrophoretic and liquid phase separations methods in the study of nucleic acids, proteins, carbohydrates natural products, pharmaceuticals, food analysis, environmental species and other compounds of importance to the life sciences. Papers in the areas of microfluidics and proteomics, which are not limited to electrophoresis-based methods, will also be accepted for publication. Contributions focused on hyphenated and omics techniques are also of interest. Proteomics is within the scope, if related to its fundamentals and new technical approaches. Proteomics applications are only considered in particular cases. Papers describing the application of standard electrophoretic methods will not be considered. Papers on nanoanalysis intended for publication in ELECTROPHORESIS should focus on one or more of the following topics: • Nanoscale electrokinetics and phenomena related to electric double layer and/or confinement in nano-sized geometry • Single cell and subcellular analysis • Nanosensors and ultrasensitive detection aspects (e.g., involving quantum dots, "nanoelectrodes" or nanospray MS) • Nanoscale/nanopore DNA sequencing (next generation sequencing) • Micro- and nanoscale sample preparation • Nanoparticles and cells analyses by dielectrophoresis • Separation-based analysis using nanoparticles, nanotubes and nanowires.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信