{"title":"IBSP 通过 BMP-SMAD 信号通路促进乳腺癌骨转移和增殖","authors":"Wei Ding, Di Lv, Mengshen Wang, Dongsheng Pei","doi":"10.1002/cnr2.2153","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>Integrin-Binding Sialoprotein (IBSP) has been implicated in tumor progression across various cancers. However, the specific role of IBSP in breast cancer remains underexplored. There is a need to investigate the mechanisms by which IBSP influences breast cancer progression and its potential as a therapeutic target.</p>\n </section>\n \n <section>\n \n <h3> Aims</h3>\n \n <p>This study aims to elucidate the role of IBSP in breast cancer, particularly its impact on tumor progression and its relationship with prognosis. We also seek to understand the underlying mechanisms, including the involvement of the BMP-SMAD signaling pathway, and to explore the potential of targeting IBSP for therapeutic interventions.</p>\n </section>\n \n <section>\n \n <h3> Methods and Results</h3>\n \n <p>Overexpression of IBSP in breast cancer cells led to increased migration and invasion, whereas IBSP interference reduced these behaviors, indicating its role in enhancing tumor progression. Differentially expressed genes were significantly enriched in the BMP-SMAD signaling pathway, a critical pathway for osteogenic differentiation. Transcription Factor Binding: Dual luciferase reporter assays demonstrated that SMAD4 specifically binds to the IBSP promoter, establishing a regulatory link between SMAD4 and IBSP expression. Silencing IBSP (si-IBSP) mitigated the effects of SMAD4-induced tumor proliferation, confirming that IBSP acts as a downstream target of SMAD4 in the BMP signaling pathway.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>Our study reveals that IBSP plays a significant role in breast cancer progression through the BMP-SMAD4 signaling pathway. Targeting IBSP could be a promising therapeutic strategy for breast cancer treatment. Further research into IBSP inhibitors may offer new avenues for improving treatment outcomes and managing breast cancer more effectively.</p>\n </section>\n </div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11310091/pdf/","citationCount":"0","resultStr":"{\"title\":\"IBSP Promotes Breast Cancer Bone Metastasis and Proliferation via BMP-SMAD Signaling Pathway\",\"authors\":\"Wei Ding, Di Lv, Mengshen Wang, Dongsheng Pei\",\"doi\":\"10.1002/cnr2.2153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Background</h3>\\n \\n <p>Integrin-Binding Sialoprotein (IBSP) has been implicated in tumor progression across various cancers. However, the specific role of IBSP in breast cancer remains underexplored. There is a need to investigate the mechanisms by which IBSP influences breast cancer progression and its potential as a therapeutic target.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Aims</h3>\\n \\n <p>This study aims to elucidate the role of IBSP in breast cancer, particularly its impact on tumor progression and its relationship with prognosis. We also seek to understand the underlying mechanisms, including the involvement of the BMP-SMAD signaling pathway, and to explore the potential of targeting IBSP for therapeutic interventions.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods and Results</h3>\\n \\n <p>Overexpression of IBSP in breast cancer cells led to increased migration and invasion, whereas IBSP interference reduced these behaviors, indicating its role in enhancing tumor progression. Differentially expressed genes were significantly enriched in the BMP-SMAD signaling pathway, a critical pathway for osteogenic differentiation. Transcription Factor Binding: Dual luciferase reporter assays demonstrated that SMAD4 specifically binds to the IBSP promoter, establishing a regulatory link between SMAD4 and IBSP expression. Silencing IBSP (si-IBSP) mitigated the effects of SMAD4-induced tumor proliferation, confirming that IBSP acts as a downstream target of SMAD4 in the BMP signaling pathway.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusion</h3>\\n \\n <p>Our study reveals that IBSP plays a significant role in breast cancer progression through the BMP-SMAD4 signaling pathway. Targeting IBSP could be a promising therapeutic strategy for breast cancer treatment. Further research into IBSP inhibitors may offer new avenues for improving treatment outcomes and managing breast cancer more effectively.</p>\\n </section>\\n </div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11310091/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cnr2.2153\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnr2.2153","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
IBSP Promotes Breast Cancer Bone Metastasis and Proliferation via BMP-SMAD Signaling Pathway
Background
Integrin-Binding Sialoprotein (IBSP) has been implicated in tumor progression across various cancers. However, the specific role of IBSP in breast cancer remains underexplored. There is a need to investigate the mechanisms by which IBSP influences breast cancer progression and its potential as a therapeutic target.
Aims
This study aims to elucidate the role of IBSP in breast cancer, particularly its impact on tumor progression and its relationship with prognosis. We also seek to understand the underlying mechanisms, including the involvement of the BMP-SMAD signaling pathway, and to explore the potential of targeting IBSP for therapeutic interventions.
Methods and Results
Overexpression of IBSP in breast cancer cells led to increased migration and invasion, whereas IBSP interference reduced these behaviors, indicating its role in enhancing tumor progression. Differentially expressed genes were significantly enriched in the BMP-SMAD signaling pathway, a critical pathway for osteogenic differentiation. Transcription Factor Binding: Dual luciferase reporter assays demonstrated that SMAD4 specifically binds to the IBSP promoter, establishing a regulatory link between SMAD4 and IBSP expression. Silencing IBSP (si-IBSP) mitigated the effects of SMAD4-induced tumor proliferation, confirming that IBSP acts as a downstream target of SMAD4 in the BMP signaling pathway.
Conclusion
Our study reveals that IBSP plays a significant role in breast cancer progression through the BMP-SMAD4 signaling pathway. Targeting IBSP could be a promising therapeutic strategy for breast cancer treatment. Further research into IBSP inhibitors may offer new avenues for improving treatment outcomes and managing breast cancer more effectively.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.