比较鸡在不同发育时间点的原始生殖细胞差异。

IF 2.4 2区 农林科学 Q1 AGRICULTURE, DAIRY & ANIMAL SCIENCE
Animal Bioscience Pub Date : 2024-11-01 Epub Date: 2024-08-05 DOI:10.5713/ab.24.0283
Wei Gong, Yichen Zou, Xin Liu, Yingjie Niu, Kai Jin, Bichun Li, Qisheng Zuo
{"title":"比较鸡在不同发育时间点的原始生殖细胞差异。","authors":"Wei Gong, Yichen Zou, Xin Liu, Yingjie Niu, Kai Jin, Bichun Li, Qisheng Zuo","doi":"10.5713/ab.24.0283","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Recently, the application in the field of germplasm resource conservation has become an important application of primordial germ cells (PGCs). However, due to the lack of deep understanding of the biological characteristics of PGCs at different time points, there is no systematic scheme for the selection of PGCs at which time points in practical application, which affects the practical application effect of PGCs. This study aims to clarify the differences in PGCs during development.</p><p><strong>Methods: </strong>Here, migration experiment, EdU proliferation assay and cell apoptosis assay were conducted to compare the differences in the migration ability, the proliferation ability and the recovery efficiency among female and male PGCs at E3.5, E4.5, and E5.5, which were explained by the following transcriptome sequencing analysis.</p><p><strong>Results: </strong>We found that there were larger differences between female and male PGCs at different embryonic ages, while smaller differences between female and male PGCs at the same embryonic age. Further comparison showed that the cell migration ability of female and male PGCs decreased gradually during development, so female and male PGCs at E3.5 are more suitable for in vitro allotransplantation. At the same time, the proliferation ability of PGCs gradually decreased during development, and cell adhesion and extracellular matrix communication were weakened, indicating that female and male PGCs of E3.5 are more suitable for in vitro long-term culture cell line establishment. Interestingly, female and male PGCs at E5.5 showed strong DNA damage repair ability, thus more suitable for in vitro long-term cryopreservation.</p><p><strong>Conclusion: </strong>This study provides a theoretical basis for systematically selecting PGCs at suitable developmental time points as cell materials for efficient utilization by analyzing the characteristics of female and male PGCs at different developmental time points based on transcriptome.</p>","PeriodicalId":7825,"journal":{"name":"Animal Bioscience","volume":" ","pages":"1873-1886"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11541041/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comparison of primordial germ cell differences at different developmental time points in chickens.\",\"authors\":\"Wei Gong, Yichen Zou, Xin Liu, Yingjie Niu, Kai Jin, Bichun Li, Qisheng Zuo\",\"doi\":\"10.5713/ab.24.0283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Recently, the application in the field of germplasm resource conservation has become an important application of primordial germ cells (PGCs). However, due to the lack of deep understanding of the biological characteristics of PGCs at different time points, there is no systematic scheme for the selection of PGCs at which time points in practical application, which affects the practical application effect of PGCs. This study aims to clarify the differences in PGCs during development.</p><p><strong>Methods: </strong>Here, migration experiment, EdU proliferation assay and cell apoptosis assay were conducted to compare the differences in the migration ability, the proliferation ability and the recovery efficiency among female and male PGCs at E3.5, E4.5, and E5.5, which were explained by the following transcriptome sequencing analysis.</p><p><strong>Results: </strong>We found that there were larger differences between female and male PGCs at different embryonic ages, while smaller differences between female and male PGCs at the same embryonic age. Further comparison showed that the cell migration ability of female and male PGCs decreased gradually during development, so female and male PGCs at E3.5 are more suitable for in vitro allotransplantation. At the same time, the proliferation ability of PGCs gradually decreased during development, and cell adhesion and extracellular matrix communication were weakened, indicating that female and male PGCs of E3.5 are more suitable for in vitro long-term culture cell line establishment. Interestingly, female and male PGCs at E5.5 showed strong DNA damage repair ability, thus more suitable for in vitro long-term cryopreservation.</p><p><strong>Conclusion: </strong>This study provides a theoretical basis for systematically selecting PGCs at suitable developmental time points as cell materials for efficient utilization by analyzing the characteristics of female and male PGCs at different developmental time points based on transcriptome.</p>\",\"PeriodicalId\":7825,\"journal\":{\"name\":\"Animal Bioscience\",\"volume\":\" \",\"pages\":\"1873-1886\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11541041/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Animal Bioscience\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.5713/ab.24.0283\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Bioscience","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.5713/ab.24.0283","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

目的:近年来,原始生殖细胞(PGCs)在种质资源保护领域的应用已成为一项重要应用。然而,由于对不同时间点 PGCs 的生物学特性缺乏深入了解,在实际应用中选择哪个时间点的 PGCs 没有系统的方案,影响了 PGCs 的实际应用效果。方法:通过迁移实验、EdU增殖实验和细胞凋亡实验,比较雌性和雄性PGCs在E3.5、E4.5和E5.5时迁移能力、增殖能力和恢复效率的差异,并通过转录组测序分析加以解释:我们发现,不同胚胎年龄的雌性和雄性PGCs差异较大,而相同胚胎年龄的雌性和雄性PGCs差异较小。进一步比较发现,雌性和雄性PGCs的细胞迁移能力在发育过程中逐渐下降,因此E3.5期的雌性和雄性PGCs更适合体外异种移植。同时,PGCs的增殖能力在发育过程中逐渐减弱,细胞粘附和细胞外基质通讯能力减弱,表明E3.5的雌性和雄性PGCs更适合体外长期培养细胞系的建立。有趣的是,E5.5的雌性和雄性PGCs表现出较强的DNA损伤修复能力,因此更适合体外长期冷冻保存:本研究通过分析不同发育时间点雌性和雄性PGCs的转录组特征,为系统地选择合适发育时间点的PGCs作为细胞材料以高效利用提供了理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of primordial germ cell differences at different developmental time points in chickens.

Objective: Recently, the application in the field of germplasm resource conservation has become an important application of primordial germ cells (PGCs). However, due to the lack of deep understanding of the biological characteristics of PGCs at different time points, there is no systematic scheme for the selection of PGCs at which time points in practical application, which affects the practical application effect of PGCs. This study aims to clarify the differences in PGCs during development.

Methods: Here, migration experiment, EdU proliferation assay and cell apoptosis assay were conducted to compare the differences in the migration ability, the proliferation ability and the recovery efficiency among female and male PGCs at E3.5, E4.5, and E5.5, which were explained by the following transcriptome sequencing analysis.

Results: We found that there were larger differences between female and male PGCs at different embryonic ages, while smaller differences between female and male PGCs at the same embryonic age. Further comparison showed that the cell migration ability of female and male PGCs decreased gradually during development, so female and male PGCs at E3.5 are more suitable for in vitro allotransplantation. At the same time, the proliferation ability of PGCs gradually decreased during development, and cell adhesion and extracellular matrix communication were weakened, indicating that female and male PGCs of E3.5 are more suitable for in vitro long-term culture cell line establishment. Interestingly, female and male PGCs at E5.5 showed strong DNA damage repair ability, thus more suitable for in vitro long-term cryopreservation.

Conclusion: This study provides a theoretical basis for systematically selecting PGCs at suitable developmental time points as cell materials for efficient utilization by analyzing the characteristics of female and male PGCs at different developmental time points based on transcriptome.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Animal Bioscience
Animal Bioscience AGRICULTURE, DAIRY & ANIMAL SCIENCE-
CiteScore
5.00
自引率
0.00%
发文量
223
审稿时长
3 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信