Qingsong Zhang , Changxin Huang , Jun Liu , Lianzhen Zhang , Xiaochen Wang , Yan Pei
{"title":"基于圈出扩散模型的富水断裂岩体中速凝浆的扩散机理","authors":"Qingsong Zhang , Changxin Huang , Jun Liu , Lianzhen Zhang , Xiaochen Wang , Yan Pei","doi":"10.1016/j.ijrmms.2024.105856","DOIUrl":null,"url":null,"abstract":"<div><p>Grouting is the most commonly used methods in dealing with water inrush issue in mine and tunnel engineering. In order to better predict the grouting effect, research on slurry diffusion mechanism became a hotspot for scholars. At present, the mainstream theoretical model used to study the slurry diffusion mechanism are the circle diffusion model and the modified ones in plane plate fracture. However, these models cannot explain the “contradiction” between the rapid setting characteristics of quick-setting slurry and the continuous long-term injection of slurry in grouting engineering, which cannot accurately predict the grouting pressure or grouting diffusion range. Therefore, a “circle-outburst diffusion model” which can explain the above “contradiction” was proposed in this paper. Based on the new model, stepwise algorithms were developed to predict the grouting pressure and slurry diffusion range. By means of conducting fracture grouting simulation test and collecting grouting pressure data in an actual grouting project, the new model was verified and the slurry diffusion mechanism was studied. Comparison results indicate that the new model can reveal the intrinsic reason for the irregular diffusion phenomenon of the slurry and forecast the outburst moment accurately. The circle diffusion stage and outburst diffusion stage elaborated in the new “circle-outburst diffusion model” were consistent with the staged characteristics of the grouting process presented in the grouting simulating test. Differences between theoretical and experimental pressure value were within 10 %, indicating a high degree of consistency. The number and distribution of outburst diffusion points determine slurry diffusion form and significantly influence the diffusion range. The grouting pressure and the length of slurry flow path increase nonlinearly with time in each diffusion stage. It is hoped that the new model can provide a theoretical basis for the study of diffusion mechanism of quick-setting slurry.</p></div>","PeriodicalId":54941,"journal":{"name":"International Journal of Rock Mechanics and Mining Sciences","volume":"181 ","pages":"Article 105856"},"PeriodicalIF":7.0000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diffusion mechanism of quick-setting slurry in water-rich fractured rock mass based on circle-outburst diffusion model\",\"authors\":\"Qingsong Zhang , Changxin Huang , Jun Liu , Lianzhen Zhang , Xiaochen Wang , Yan Pei\",\"doi\":\"10.1016/j.ijrmms.2024.105856\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Grouting is the most commonly used methods in dealing with water inrush issue in mine and tunnel engineering. In order to better predict the grouting effect, research on slurry diffusion mechanism became a hotspot for scholars. At present, the mainstream theoretical model used to study the slurry diffusion mechanism are the circle diffusion model and the modified ones in plane plate fracture. However, these models cannot explain the “contradiction” between the rapid setting characteristics of quick-setting slurry and the continuous long-term injection of slurry in grouting engineering, which cannot accurately predict the grouting pressure or grouting diffusion range. Therefore, a “circle-outburst diffusion model” which can explain the above “contradiction” was proposed in this paper. Based on the new model, stepwise algorithms were developed to predict the grouting pressure and slurry diffusion range. By means of conducting fracture grouting simulation test and collecting grouting pressure data in an actual grouting project, the new model was verified and the slurry diffusion mechanism was studied. Comparison results indicate that the new model can reveal the intrinsic reason for the irregular diffusion phenomenon of the slurry and forecast the outburst moment accurately. The circle diffusion stage and outburst diffusion stage elaborated in the new “circle-outburst diffusion model” were consistent with the staged characteristics of the grouting process presented in the grouting simulating test. Differences between theoretical and experimental pressure value were within 10 %, indicating a high degree of consistency. The number and distribution of outburst diffusion points determine slurry diffusion form and significantly influence the diffusion range. The grouting pressure and the length of slurry flow path increase nonlinearly with time in each diffusion stage. It is hoped that the new model can provide a theoretical basis for the study of diffusion mechanism of quick-setting slurry.</p></div>\",\"PeriodicalId\":54941,\"journal\":{\"name\":\"International Journal of Rock Mechanics and Mining Sciences\",\"volume\":\"181 \",\"pages\":\"Article 105856\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Rock Mechanics and Mining Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1365160924002211\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Rock Mechanics and Mining Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1365160924002211","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Diffusion mechanism of quick-setting slurry in water-rich fractured rock mass based on circle-outburst diffusion model
Grouting is the most commonly used methods in dealing with water inrush issue in mine and tunnel engineering. In order to better predict the grouting effect, research on slurry diffusion mechanism became a hotspot for scholars. At present, the mainstream theoretical model used to study the slurry diffusion mechanism are the circle diffusion model and the modified ones in plane plate fracture. However, these models cannot explain the “contradiction” between the rapid setting characteristics of quick-setting slurry and the continuous long-term injection of slurry in grouting engineering, which cannot accurately predict the grouting pressure or grouting diffusion range. Therefore, a “circle-outburst diffusion model” which can explain the above “contradiction” was proposed in this paper. Based on the new model, stepwise algorithms were developed to predict the grouting pressure and slurry diffusion range. By means of conducting fracture grouting simulation test and collecting grouting pressure data in an actual grouting project, the new model was verified and the slurry diffusion mechanism was studied. Comparison results indicate that the new model can reveal the intrinsic reason for the irregular diffusion phenomenon of the slurry and forecast the outburst moment accurately. The circle diffusion stage and outburst diffusion stage elaborated in the new “circle-outburst diffusion model” were consistent with the staged characteristics of the grouting process presented in the grouting simulating test. Differences between theoretical and experimental pressure value were within 10 %, indicating a high degree of consistency. The number and distribution of outburst diffusion points determine slurry diffusion form and significantly influence the diffusion range. The grouting pressure and the length of slurry flow path increase nonlinearly with time in each diffusion stage. It is hoped that the new model can provide a theoretical basis for the study of diffusion mechanism of quick-setting slurry.
期刊介绍:
The International Journal of Rock Mechanics and Mining Sciences focuses on original research, new developments, site measurements, and case studies within the fields of rock mechanics and rock engineering. Serving as an international platform, it showcases high-quality papers addressing rock mechanics and the application of its principles and techniques in mining and civil engineering projects situated on or within rock masses. These projects encompass a wide range, including slopes, open-pit mines, quarries, shafts, tunnels, caverns, underground mines, metro systems, dams, hydro-electric stations, geothermal energy, petroleum engineering, and radioactive waste disposal. The journal welcomes submissions on various topics, with particular interest in theoretical advancements, analytical and numerical methods, rock testing, site investigation, and case studies.