Liwei Jia, Thomas L. Delworth, Xiaosong Yang, William Cooke, Nathaniel C. Johnson, Liping Zhang, Youngji Joh, Feiyu Lu, Colleen McHugh
{"title":"由海面温度驱动的美国东南部夏季复合湿热极端天气的季节性预测","authors":"Liwei Jia, Thomas L. Delworth, Xiaosong Yang, William Cooke, Nathaniel C. Johnson, Liping Zhang, Youngji Joh, Feiyu Lu, Colleen McHugh","doi":"10.1038/s41612-024-00723-0","DOIUrl":null,"url":null,"abstract":"Humid heat extreme (HHE) is a type of compound extreme weather event that poses severe risks to human health. Skillful forecasts of HHE months in advance are crucial for developing strategies to enhance community resilience to extreme events1,2. This study demonstrates that the frequency of summertime HHE in the southeastern United States (SEUS) can be skillfully predicted 0–1 months in advance using the SPEAR (Seamless system for Prediction and EArth system Research) seasonal forecast system. Sea surface temperatures (SSTs) in the tropical North Atlantic (TNA) basin are identified as the primary driver of this prediction skill. The responses of large-scale atmospheric circulation and winds to anomalous warm SSTs in the TNA favor the transport of heat and moisture from the Gulf of Mexico to the SEUS. This research underscores the role of slowly varying sea surface conditions in modifying large-scale environments, thereby contributing to the skillful prediction of HHE in the SEUS. The results of this study have potential applications in the development of early warning systems for HHE.","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":null,"pages":null},"PeriodicalIF":8.5000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41612-024-00723-0.pdf","citationCount":"0","resultStr":"{\"title\":\"Seasonal predictions of summer compound humid heat extremes in the southeastern United States driven by sea surface temperatures\",\"authors\":\"Liwei Jia, Thomas L. Delworth, Xiaosong Yang, William Cooke, Nathaniel C. Johnson, Liping Zhang, Youngji Joh, Feiyu Lu, Colleen McHugh\",\"doi\":\"10.1038/s41612-024-00723-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Humid heat extreme (HHE) is a type of compound extreme weather event that poses severe risks to human health. Skillful forecasts of HHE months in advance are crucial for developing strategies to enhance community resilience to extreme events1,2. This study demonstrates that the frequency of summertime HHE in the southeastern United States (SEUS) can be skillfully predicted 0–1 months in advance using the SPEAR (Seamless system for Prediction and EArth system Research) seasonal forecast system. Sea surface temperatures (SSTs) in the tropical North Atlantic (TNA) basin are identified as the primary driver of this prediction skill. The responses of large-scale atmospheric circulation and winds to anomalous warm SSTs in the TNA favor the transport of heat and moisture from the Gulf of Mexico to the SEUS. This research underscores the role of slowly varying sea surface conditions in modifying large-scale environments, thereby contributing to the skillful prediction of HHE in the SEUS. The results of this study have potential applications in the development of early warning systems for HHE.\",\"PeriodicalId\":19438,\"journal\":{\"name\":\"npj Climate and Atmospheric Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41612-024-00723-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Climate and Atmospheric Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.nature.com/articles/s41612-024-00723-0\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://www.nature.com/articles/s41612-024-00723-0","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Seasonal predictions of summer compound humid heat extremes in the southeastern United States driven by sea surface temperatures
Humid heat extreme (HHE) is a type of compound extreme weather event that poses severe risks to human health. Skillful forecasts of HHE months in advance are crucial for developing strategies to enhance community resilience to extreme events1,2. This study demonstrates that the frequency of summertime HHE in the southeastern United States (SEUS) can be skillfully predicted 0–1 months in advance using the SPEAR (Seamless system for Prediction and EArth system Research) seasonal forecast system. Sea surface temperatures (SSTs) in the tropical North Atlantic (TNA) basin are identified as the primary driver of this prediction skill. The responses of large-scale atmospheric circulation and winds to anomalous warm SSTs in the TNA favor the transport of heat and moisture from the Gulf of Mexico to the SEUS. This research underscores the role of slowly varying sea surface conditions in modifying large-scale environments, thereby contributing to the skillful prediction of HHE in the SEUS. The results of this study have potential applications in the development of early warning systems for HHE.
期刊介绍:
npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols.
The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.