Andreas M. Tillmann, Daniel Bienstock, Andrea Lodi, Alexandra Schwartz
{"title":"卡方最小化、约束和正则化:调查","authors":"Andreas M. Tillmann, Daniel Bienstock, Andrea Lodi, Alexandra Schwartz","doi":"10.1137/21m142770x","DOIUrl":null,"url":null,"abstract":"SIAM Review, Volume 66, Issue 3, Page 403-477, May 2024. <br/> We survey optimization problems that involve the cardinality of variable vectors in constraints or the objective function. We provide a unified viewpoint on the general problem classes and models, and we give concrete examples from diverse application fields such as signal and image processing, portfolio selection, and machine learning. The paper discusses general-purpose modeling techniques and broadly applicable as well as problem-specific exact and heuristic solution approaches. While our perspective is that of mathematical optimization, a main goal of this work is to reach out to and build bridges between the different communities in which cardinality optimization problems are frequently encountered. In particular, we highlight that modern mixed-integer programming, which is often regarded as impractical due to the commonly unsatisfactory behavior of black-box solvers applied to generic problem formulations, can in fact produce provably high-quality or even optimal solutions for cardinality optimization problems, even in large-scale real-world settings. Achieving such performance typically involves drawing on the merits of problem-specific knowledge that may stem from different fields of application and, e.g., can shed light on structural properties of a model or its solutions, or can lead to the development of efficient heuristics. We also provide some illustrative examples.","PeriodicalId":49525,"journal":{"name":"SIAM Review","volume":"30 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cardinality Minimization, Constraints, and Regularization: A Survey\",\"authors\":\"Andreas M. Tillmann, Daniel Bienstock, Andrea Lodi, Alexandra Schwartz\",\"doi\":\"10.1137/21m142770x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Review, Volume 66, Issue 3, Page 403-477, May 2024. <br/> We survey optimization problems that involve the cardinality of variable vectors in constraints or the objective function. We provide a unified viewpoint on the general problem classes and models, and we give concrete examples from diverse application fields such as signal and image processing, portfolio selection, and machine learning. The paper discusses general-purpose modeling techniques and broadly applicable as well as problem-specific exact and heuristic solution approaches. While our perspective is that of mathematical optimization, a main goal of this work is to reach out to and build bridges between the different communities in which cardinality optimization problems are frequently encountered. In particular, we highlight that modern mixed-integer programming, which is often regarded as impractical due to the commonly unsatisfactory behavior of black-box solvers applied to generic problem formulations, can in fact produce provably high-quality or even optimal solutions for cardinality optimization problems, even in large-scale real-world settings. Achieving such performance typically involves drawing on the merits of problem-specific knowledge that may stem from different fields of application and, e.g., can shed light on structural properties of a model or its solutions, or can lead to the development of efficient heuristics. We also provide some illustrative examples.\",\"PeriodicalId\":49525,\"journal\":{\"name\":\"SIAM Review\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Review\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/21m142770x\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Review","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/21m142770x","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Cardinality Minimization, Constraints, and Regularization: A Survey
SIAM Review, Volume 66, Issue 3, Page 403-477, May 2024. We survey optimization problems that involve the cardinality of variable vectors in constraints or the objective function. We provide a unified viewpoint on the general problem classes and models, and we give concrete examples from diverse application fields such as signal and image processing, portfolio selection, and machine learning. The paper discusses general-purpose modeling techniques and broadly applicable as well as problem-specific exact and heuristic solution approaches. While our perspective is that of mathematical optimization, a main goal of this work is to reach out to and build bridges between the different communities in which cardinality optimization problems are frequently encountered. In particular, we highlight that modern mixed-integer programming, which is often regarded as impractical due to the commonly unsatisfactory behavior of black-box solvers applied to generic problem formulations, can in fact produce provably high-quality or even optimal solutions for cardinality optimization problems, even in large-scale real-world settings. Achieving such performance typically involves drawing on the merits of problem-specific knowledge that may stem from different fields of application and, e.g., can shed light on structural properties of a model or its solutions, or can lead to the development of efficient heuristics. We also provide some illustrative examples.
期刊介绍:
Survey and Review feature papers that provide an integrative and current viewpoint on important topics in applied or computational mathematics and scientific computing. These papers aim to offer a comprehensive perspective on the subject matter.
Research Spotlights publish concise research papers in applied and computational mathematics that are of interest to a wide range of readers in SIAM Review. The papers in this section present innovative ideas that are clearly explained and motivated. They stand out from regular publications in specific SIAM journals due to their accessibility and potential for widespread and long-lasting influence.