{"title":"有机磷杀虫剂对蜘蛛 Misumenops maculissparsus(Araneae: Thomisidae)行为和生理的影响。","authors":"S. Romero , A. Laino , C. Gabellone , C.F. Garcia","doi":"10.1016/j.etap.2024.104525","DOIUrl":null,"url":null,"abstract":"<div><p>Pests in agriculture cause significant economic damage by reducing production and product quality. While pesticides can be an alternative for pest control, their use has a significant impact on both the environment and human health. Chlorpyrifos, a widely used pesticide, affects both target and non-target organisms, including spiders. In this study, we investigated whether <em>Misumenops maculissparsus</em> spiders at three developmental stages (J0, J2, and adults) recognize the presence of the insecticide and how it affects their enzymatic activity. The results indicated that only J0 was able to recognize the insecticide and avoided surfaces treated with it. On the other hand, J0 and adults exhibited reduced acetylcholinesterase (AChE) activity and the activity of antioxidant enzymes was affected by the treatment. Superoxide dismutase (SOD) increased significantly in J0, catalase (CAT) in all stages, glutathione S-transferase (GST) in J2, and glutathione peroxidase (GPx) in J2 and adults. Chlorpyrifos exposure did not increase reactive oxygen species or alter cellular populations in any model.</p></div>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of an organophosphate insecticide on the behaviour and physiology of the spider Misumenops maculissparsus (Araneae: Thomisidae)\",\"authors\":\"S. Romero , A. Laino , C. Gabellone , C.F. Garcia\",\"doi\":\"10.1016/j.etap.2024.104525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Pests in agriculture cause significant economic damage by reducing production and product quality. While pesticides can be an alternative for pest control, their use has a significant impact on both the environment and human health. Chlorpyrifos, a widely used pesticide, affects both target and non-target organisms, including spiders. In this study, we investigated whether <em>Misumenops maculissparsus</em> spiders at three developmental stages (J0, J2, and adults) recognize the presence of the insecticide and how it affects their enzymatic activity. The results indicated that only J0 was able to recognize the insecticide and avoided surfaces treated with it. On the other hand, J0 and adults exhibited reduced acetylcholinesterase (AChE) activity and the activity of antioxidant enzymes was affected by the treatment. Superoxide dismutase (SOD) increased significantly in J0, catalase (CAT) in all stages, glutathione S-transferase (GST) in J2, and glutathione peroxidase (GPx) in J2 and adults. Chlorpyrifos exposure did not increase reactive oxygen species or alter cellular populations in any model.</p></div>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1382668924001650\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1382668924001650","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Effect of an organophosphate insecticide on the behaviour and physiology of the spider Misumenops maculissparsus (Araneae: Thomisidae)
Pests in agriculture cause significant economic damage by reducing production and product quality. While pesticides can be an alternative for pest control, their use has a significant impact on both the environment and human health. Chlorpyrifos, a widely used pesticide, affects both target and non-target organisms, including spiders. In this study, we investigated whether Misumenops maculissparsus spiders at three developmental stages (J0, J2, and adults) recognize the presence of the insecticide and how it affects their enzymatic activity. The results indicated that only J0 was able to recognize the insecticide and avoided surfaces treated with it. On the other hand, J0 and adults exhibited reduced acetylcholinesterase (AChE) activity and the activity of antioxidant enzymes was affected by the treatment. Superoxide dismutase (SOD) increased significantly in J0, catalase (CAT) in all stages, glutathione S-transferase (GST) in J2, and glutathione peroxidase (GPx) in J2 and adults. Chlorpyrifos exposure did not increase reactive oxygen species or alter cellular populations in any model.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.