海南瓜虫病暴发菌株的遗传多样性和进化分析。

IF 2.6 4区 医学 Q3 INFECTIOUS DISEASES
{"title":"海南瓜虫病暴发菌株的遗传多样性和进化分析。","authors":"","doi":"10.1016/j.meegid.2024.105654","DOIUrl":null,"url":null,"abstract":"<div><p>Melioidosis is a zoonotic disease, with its outbreaks being rare and indicative of an unusual concurrence of extreme climate and natural environmental factors. An outbreak of melioidosis cases emerged in Hainan following Typhoon “Dianmu” from October to December 2021, presenting an opportunity to identify the environmental sources of infection for these cases due to its nature as a well-defined point-source cluster. To investigate the relationship between the occurrence of these melioidosis cases and the environment, we extracted the entire genome of 25 clinical strains and conducted MLST typing, followed by whole genome sequencing and analysis of molecular genetic information for four ST46 genotypes from these strains. Phylogenetic and evolutionary relationships between Hainan sequence types (STs) and those found in other endemic regions were analyzed using IslandPath-DIMO, PHASTER, e-BURST, PHYLOViZ, and the maximum likelihood method. Notably, a total of 25 clinical strains were identified, encompassing 12 STs (ST46, ST1105, ST1991, ST30, ST1992, ST50, ST164, ST55, ST70, ST1993, ST1545, and ST58), with ST1991, ST1992, and ST1993 being newly discovered subtypes. PHYLOViZ clustering analysis divided the strains into two groups (A and B), both closely related to the Asian region. Phylogenetic tree analysis further revealed that most of the strains in this study were closely related to those found in Australia and Thailand. Analysis of patient information and visits to their residences suggested that contaminated water sources might be the primary source of infection during this outbreak.</p><p>Our findings underscore that extreme weather events, such as typhoons, significantly increase the infection rate of <em>B. pseudomallei</em>, along with its genetic diversity, necessitating additional prevention strategies to control these <em>B. pseudomallei</em> infections.</p></div>","PeriodicalId":54986,"journal":{"name":"Infection Genetics and Evolution","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1567134824001059/pdfft?md5=254761fb461cfc97b2e927c498ab50d0&pid=1-s2.0-S1567134824001059-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The genetic diversity and evolution analysis of the Hainan melioidosis outbreak strains\",\"authors\":\"\",\"doi\":\"10.1016/j.meegid.2024.105654\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Melioidosis is a zoonotic disease, with its outbreaks being rare and indicative of an unusual concurrence of extreme climate and natural environmental factors. An outbreak of melioidosis cases emerged in Hainan following Typhoon “Dianmu” from October to December 2021, presenting an opportunity to identify the environmental sources of infection for these cases due to its nature as a well-defined point-source cluster. To investigate the relationship between the occurrence of these melioidosis cases and the environment, we extracted the entire genome of 25 clinical strains and conducted MLST typing, followed by whole genome sequencing and analysis of molecular genetic information for four ST46 genotypes from these strains. Phylogenetic and evolutionary relationships between Hainan sequence types (STs) and those found in other endemic regions were analyzed using IslandPath-DIMO, PHASTER, e-BURST, PHYLOViZ, and the maximum likelihood method. Notably, a total of 25 clinical strains were identified, encompassing 12 STs (ST46, ST1105, ST1991, ST30, ST1992, ST50, ST164, ST55, ST70, ST1993, ST1545, and ST58), with ST1991, ST1992, and ST1993 being newly discovered subtypes. PHYLOViZ clustering analysis divided the strains into two groups (A and B), both closely related to the Asian region. Phylogenetic tree analysis further revealed that most of the strains in this study were closely related to those found in Australia and Thailand. Analysis of patient information and visits to their residences suggested that contaminated water sources might be the primary source of infection during this outbreak.</p><p>Our findings underscore that extreme weather events, such as typhoons, significantly increase the infection rate of <em>B. pseudomallei</em>, along with its genetic diversity, necessitating additional prevention strategies to control these <em>B. pseudomallei</em> infections.</p></div>\",\"PeriodicalId\":54986,\"journal\":{\"name\":\"Infection Genetics and Evolution\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1567134824001059/pdfft?md5=254761fb461cfc97b2e927c498ab50d0&pid=1-s2.0-S1567134824001059-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Infection Genetics and Evolution\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1567134824001059\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INFECTIOUS DISEASES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infection Genetics and Evolution","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567134824001059","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0

摘要

瓜虫病是一种人畜共患疾病,其暴发十分罕见,是极端气候和自然环境因素异常叠加的产物。2021 年 10 月至 12 月台风 "电母 "过后,海南出现了瓜虫病暴发,由于其具有明确的点源集群性质,为确定这些病例的环境传染源提供了机会。为了研究这些瓜虫病病例的发生与环境之间的关系,我们提取了 25 株临床菌株的全基因组并进行了 MLST 分型,随后对这些菌株的 4 个 ST46 基因型进行了全基因组测序和分子遗传信息分析。利用IslandPath-DIMO、PHASTER、e-BURST、PHYLOViZ和最大似然法分析了海南序列类型(ST)与其他流行地区序列类型(ST)之间的系统发育和进化关系。值得注意的是,共鉴定出 25 株临床菌株,包括 12 个 ST(ST46、ST1105、ST1991、ST30、ST1992、ST50、ST164、ST55、ST70、ST1993、ST1545 和 ST58),其中 ST1991、ST1992 和 ST1993 是新发现的亚型。PHYLOViZ 聚类分析将菌株分为两组(A 和 B),均与亚洲地区密切相关。系统发生树分析进一步显示,本研究中的大多数菌株与澳大利亚和泰国的菌株关系密切。对患者信息的分析和对其住所的访问表明,受污染的水源可能是此次疫情的主要传染源。我们的研究结果表明,台风等极端天气事件大大增加了假丝酵母菌的感染率及其遗传多样性,因此有必要采取更多的预防策略来控制这些假丝酵母菌感染。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The genetic diversity and evolution analysis of the Hainan melioidosis outbreak strains

Melioidosis is a zoonotic disease, with its outbreaks being rare and indicative of an unusual concurrence of extreme climate and natural environmental factors. An outbreak of melioidosis cases emerged in Hainan following Typhoon “Dianmu” from October to December 2021, presenting an opportunity to identify the environmental sources of infection for these cases due to its nature as a well-defined point-source cluster. To investigate the relationship between the occurrence of these melioidosis cases and the environment, we extracted the entire genome of 25 clinical strains and conducted MLST typing, followed by whole genome sequencing and analysis of molecular genetic information for four ST46 genotypes from these strains. Phylogenetic and evolutionary relationships between Hainan sequence types (STs) and those found in other endemic regions were analyzed using IslandPath-DIMO, PHASTER, e-BURST, PHYLOViZ, and the maximum likelihood method. Notably, a total of 25 clinical strains were identified, encompassing 12 STs (ST46, ST1105, ST1991, ST30, ST1992, ST50, ST164, ST55, ST70, ST1993, ST1545, and ST58), with ST1991, ST1992, and ST1993 being newly discovered subtypes. PHYLOViZ clustering analysis divided the strains into two groups (A and B), both closely related to the Asian region. Phylogenetic tree analysis further revealed that most of the strains in this study were closely related to those found in Australia and Thailand. Analysis of patient information and visits to their residences suggested that contaminated water sources might be the primary source of infection during this outbreak.

Our findings underscore that extreme weather events, such as typhoons, significantly increase the infection rate of B. pseudomallei, along with its genetic diversity, necessitating additional prevention strategies to control these B. pseudomallei infections.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Infection Genetics and Evolution
Infection Genetics and Evolution 医学-传染病学
CiteScore
8.40
自引率
0.00%
发文量
215
审稿时长
82 days
期刊介绍: (aka Journal of Molecular Epidemiology and Evolutionary Genetics of Infectious Diseases -- MEEGID) Infectious diseases constitute one of the main challenges to medical science in the coming century. The impressive development of molecular megatechnologies and of bioinformatics have greatly increased our knowledge of the evolution, transmission and pathogenicity of infectious diseases. Research has shown that host susceptibility to many infectious diseases has a genetic basis. Furthermore, much is now known on the molecular epidemiology, evolution and virulence of pathogenic agents, as well as their resistance to drugs, vaccines, and antibiotics. Equally, research on the genetics of disease vectors has greatly improved our understanding of their systematics, has increased our capacity to identify target populations for control or intervention, and has provided detailed information on the mechanisms of insecticide resistance. However, the genetics and evolutionary biology of hosts, pathogens and vectors have tended to develop as three separate fields of research. This artificial compartmentalisation is of concern due to our growing appreciation of the strong co-evolutionary interactions among hosts, pathogens and vectors. Infection, Genetics and Evolution and its companion congress [MEEGID](http://www.meegidconference.com/) (for Molecular Epidemiology and Evolutionary Genetics of Infectious Diseases) are the main forum acting for the cross-fertilization between evolutionary science and biomedical research on infectious diseases. Infection, Genetics and Evolution is the only journal that welcomes articles dealing with the genetics and evolutionary biology of hosts, pathogens and vectors, and coevolution processes among them in relation to infection and disease manifestation. All infectious models enter the scope of the journal, including pathogens of humans, animals and plants, either parasites, fungi, bacteria, viruses or prions. The journal welcomes articles dealing with genetics, population genetics, genomics, postgenomics, gene expression, evolutionary biology, population dynamics, mathematical modeling and bioinformatics. We also provide many author benefits, such as free PDFs, a liberal copyright policy, special discounts on Elsevier publications and much more. Please click here for more information on our author services .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信