{"title":"中国海南岛热带环境中咬蚊(双翅目:Ceratopogonidae)的分子鉴定和遗传多样性。","authors":"Yaj Lu, Jie Su, Shi Cheng, Yax Hu, Qianf Xia","doi":"10.4103/JVBD.JVBD_100_23","DOIUrl":null,"url":null,"abstract":"<p><strong>Background objectives: </strong>Biting midges are hematophagous arthropods responsible for zoonotic infectious diseases and have a wide distribution in temperate and tropical latitudes of the world.</p><p><strong>Methods: </strong>The genomic DNA of midge samples was extracted using the Chelex method and the ITS1gene was amplified by PCR to identify the midge species via BLAST. The sequence characteristics and the genetic diversity were analyzed using ClustalOmega, DnaSP, Arlequin, PopART, and TCS software tool. The validity of the ITS1 gene as a DNA barcode marker was evaluated using DAMBE. The phylogenetic relationship was established in the MEGA software. The ABGD web determined the species boundary and the SDT software visualized the pairwise sequence comparisons.</p><p><strong>Results: </strong>A total of 39 midge samples possessed the range from 364 to 429 bp of the ITS1 sequences. The midge samples were identified as Culicoides imicola, Culicoides oxystoma, Culicoides peregrinus, Culicoides jacobsoni, Forcipomyia peregrinator, and Culicoides fulvus, respectively. The ITS1 sequences had 288 conserved sites (60.25%), 167 variable sites (34.94%), 141 parsimony-informative sites (29.50%), and 26 singleton sites (5.44%), with a considerable sequence variation with a high haplotype diversity. Populations in Lingao, Haikou, Tunchang were relatively independent, with a low level of gene flow. A separate population of Forcipomyia genus in Danzhou was observed.</p><p><strong>Interpretation conclusion: </strong>The biting midges in Hainan, a tropical island, had abundant genetic diversity. Timely surveillance is a crucial control measure for the spread of midge-borne diseases.</p>","PeriodicalId":17660,"journal":{"name":"Journal of Vector Borne Diseases","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular identification and genetic diversity of biting midges (Diptera: Ceratopogonidae) in the tropical environment on Hainan Island, China.\",\"authors\":\"Yaj Lu, Jie Su, Shi Cheng, Yax Hu, Qianf Xia\",\"doi\":\"10.4103/JVBD.JVBD_100_23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background objectives: </strong>Biting midges are hematophagous arthropods responsible for zoonotic infectious diseases and have a wide distribution in temperate and tropical latitudes of the world.</p><p><strong>Methods: </strong>The genomic DNA of midge samples was extracted using the Chelex method and the ITS1gene was amplified by PCR to identify the midge species via BLAST. The sequence characteristics and the genetic diversity were analyzed using ClustalOmega, DnaSP, Arlequin, PopART, and TCS software tool. The validity of the ITS1 gene as a DNA barcode marker was evaluated using DAMBE. The phylogenetic relationship was established in the MEGA software. The ABGD web determined the species boundary and the SDT software visualized the pairwise sequence comparisons.</p><p><strong>Results: </strong>A total of 39 midge samples possessed the range from 364 to 429 bp of the ITS1 sequences. The midge samples were identified as Culicoides imicola, Culicoides oxystoma, Culicoides peregrinus, Culicoides jacobsoni, Forcipomyia peregrinator, and Culicoides fulvus, respectively. The ITS1 sequences had 288 conserved sites (60.25%), 167 variable sites (34.94%), 141 parsimony-informative sites (29.50%), and 26 singleton sites (5.44%), with a considerable sequence variation with a high haplotype diversity. Populations in Lingao, Haikou, Tunchang were relatively independent, with a low level of gene flow. A separate population of Forcipomyia genus in Danzhou was observed.</p><p><strong>Interpretation conclusion: </strong>The biting midges in Hainan, a tropical island, had abundant genetic diversity. Timely surveillance is a crucial control measure for the spread of midge-borne diseases.</p>\",\"PeriodicalId\":17660,\"journal\":{\"name\":\"Journal of Vector Borne Diseases\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vector Borne Diseases\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4103/JVBD.JVBD_100_23\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"INFECTIOUS DISEASES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vector Borne Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4103/JVBD.JVBD_100_23","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
Molecular identification and genetic diversity of biting midges (Diptera: Ceratopogonidae) in the tropical environment on Hainan Island, China.
Background objectives: Biting midges are hematophagous arthropods responsible for zoonotic infectious diseases and have a wide distribution in temperate and tropical latitudes of the world.
Methods: The genomic DNA of midge samples was extracted using the Chelex method and the ITS1gene was amplified by PCR to identify the midge species via BLAST. The sequence characteristics and the genetic diversity were analyzed using ClustalOmega, DnaSP, Arlequin, PopART, and TCS software tool. The validity of the ITS1 gene as a DNA barcode marker was evaluated using DAMBE. The phylogenetic relationship was established in the MEGA software. The ABGD web determined the species boundary and the SDT software visualized the pairwise sequence comparisons.
Results: A total of 39 midge samples possessed the range from 364 to 429 bp of the ITS1 sequences. The midge samples were identified as Culicoides imicola, Culicoides oxystoma, Culicoides peregrinus, Culicoides jacobsoni, Forcipomyia peregrinator, and Culicoides fulvus, respectively. The ITS1 sequences had 288 conserved sites (60.25%), 167 variable sites (34.94%), 141 parsimony-informative sites (29.50%), and 26 singleton sites (5.44%), with a considerable sequence variation with a high haplotype diversity. Populations in Lingao, Haikou, Tunchang were relatively independent, with a low level of gene flow. A separate population of Forcipomyia genus in Danzhou was observed.
Interpretation conclusion: The biting midges in Hainan, a tropical island, had abundant genetic diversity. Timely surveillance is a crucial control measure for the spread of midge-borne diseases.
期刊介绍:
National Institute of Malaria Research on behalf of Indian Council of Medical Research (ICMR) publishes the Journal of Vector Borne Diseases. This Journal was earlier published as the Indian Journal of Malariology, a peer reviewed and open access biomedical journal in the field of vector borne diseases. The Journal publishes review articles, original research articles, short research communications, case reports of prime importance, letters to the editor in the field of vector borne diseases and their control.