J.M. Mirón-Gatón , J. Velasco , S. Pallarés , A.J. García-Meseguer , A. Millán , D.T. Bilton
{"title":"在两个纬度相距甚远的潮上带水甲虫种群中测试新陈代谢的寒冷适应性和气候变异假说。","authors":"J.M. Mirón-Gatón , J. Velasco , S. Pallarés , A.J. García-Meseguer , A. Millán , D.T. Bilton","doi":"10.1016/j.jtherbio.2024.103934","DOIUrl":null,"url":null,"abstract":"<div><p>Temperature significantly impacts ectotherm physiology, with thermal tolerance and metabolic traits typically varying with latitude across species ranges. The drivers of this variation remain unclear, however, despite obvious consequences for population persistence and conservation in the face of ongoing global change. This study explored local adaptation and phenotypic plasticity of metabolic rates and thermal limits in the supratidal rockpool beetle <em>Ochthebius lejolisii</em>. Using populations from localities at different ends of the species range that experience contrasting thermal variability, we simultaneously tested two of the major paradigms of spatial physiological ecology: metabolic cold adaptation (MCA) and the climatic variability hypothesis (CVH). Reciprocal acclimation was conducted under spring temperature regimes of both localities, incorporating local diurnal variation. Metabolic rates were measured by closed respirometry, and thermal tolerance limits estimated through thermography. In line with MCA, the higher-latitude population (colder climate) showed higher metabolic rates and temperature coefficients (Q<sub>10</sub>s) at lower temperatures than the lower-latitude population. As predicted by the CVH, the lower-latitude population (more variable climate) showed higher upper thermal tolerance but only the higher-latitude population was able to acclimate upper thermal limits. This result suggests trade-offs between physiological thermal limits and thermal plasticity in this species. A limited acclimation capacity could make populations on Mediterranean coasts especially vulnerable in the face of projected increases in extreme temperatures under ongoing climate change.</p></div>","PeriodicalId":17428,"journal":{"name":"Journal of thermal biology","volume":"123 ","pages":"Article 103934"},"PeriodicalIF":2.9000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0306456524001529/pdfft?md5=05e4b0af4b7938197c4b1c0743492ce0&pid=1-s2.0-S0306456524001529-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Testing metabolic cold adaptation and the climatic variability hypothesis in two latitudinally distant populations of a supratidal water beetle\",\"authors\":\"J.M. Mirón-Gatón , J. Velasco , S. Pallarés , A.J. García-Meseguer , A. Millán , D.T. Bilton\",\"doi\":\"10.1016/j.jtherbio.2024.103934\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Temperature significantly impacts ectotherm physiology, with thermal tolerance and metabolic traits typically varying with latitude across species ranges. The drivers of this variation remain unclear, however, despite obvious consequences for population persistence and conservation in the face of ongoing global change. This study explored local adaptation and phenotypic plasticity of metabolic rates and thermal limits in the supratidal rockpool beetle <em>Ochthebius lejolisii</em>. Using populations from localities at different ends of the species range that experience contrasting thermal variability, we simultaneously tested two of the major paradigms of spatial physiological ecology: metabolic cold adaptation (MCA) and the climatic variability hypothesis (CVH). Reciprocal acclimation was conducted under spring temperature regimes of both localities, incorporating local diurnal variation. Metabolic rates were measured by closed respirometry, and thermal tolerance limits estimated through thermography. In line with MCA, the higher-latitude population (colder climate) showed higher metabolic rates and temperature coefficients (Q<sub>10</sub>s) at lower temperatures than the lower-latitude population. As predicted by the CVH, the lower-latitude population (more variable climate) showed higher upper thermal tolerance but only the higher-latitude population was able to acclimate upper thermal limits. This result suggests trade-offs between physiological thermal limits and thermal plasticity in this species. A limited acclimation capacity could make populations on Mediterranean coasts especially vulnerable in the face of projected increases in extreme temperatures under ongoing climate change.</p></div>\",\"PeriodicalId\":17428,\"journal\":{\"name\":\"Journal of thermal biology\",\"volume\":\"123 \",\"pages\":\"Article 103934\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0306456524001529/pdfft?md5=05e4b0af4b7938197c4b1c0743492ce0&pid=1-s2.0-S0306456524001529-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of thermal biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306456524001529\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of thermal biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306456524001529","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Testing metabolic cold adaptation and the climatic variability hypothesis in two latitudinally distant populations of a supratidal water beetle
Temperature significantly impacts ectotherm physiology, with thermal tolerance and metabolic traits typically varying with latitude across species ranges. The drivers of this variation remain unclear, however, despite obvious consequences for population persistence and conservation in the face of ongoing global change. This study explored local adaptation and phenotypic plasticity of metabolic rates and thermal limits in the supratidal rockpool beetle Ochthebius lejolisii. Using populations from localities at different ends of the species range that experience contrasting thermal variability, we simultaneously tested two of the major paradigms of spatial physiological ecology: metabolic cold adaptation (MCA) and the climatic variability hypothesis (CVH). Reciprocal acclimation was conducted under spring temperature regimes of both localities, incorporating local diurnal variation. Metabolic rates were measured by closed respirometry, and thermal tolerance limits estimated through thermography. In line with MCA, the higher-latitude population (colder climate) showed higher metabolic rates and temperature coefficients (Q10s) at lower temperatures than the lower-latitude population. As predicted by the CVH, the lower-latitude population (more variable climate) showed higher upper thermal tolerance but only the higher-latitude population was able to acclimate upper thermal limits. This result suggests trade-offs between physiological thermal limits and thermal plasticity in this species. A limited acclimation capacity could make populations on Mediterranean coasts especially vulnerable in the face of projected increases in extreme temperatures under ongoing climate change.
期刊介绍:
The Journal of Thermal Biology publishes articles that advance our knowledge on the ways and mechanisms through which temperature affects man and animals. This includes studies of their responses to these effects and on the ecological consequences. Directly relevant to this theme are:
• The mechanisms of thermal limitation, heat and cold injury, and the resistance of organisms to extremes of temperature
• The mechanisms involved in acclimation, acclimatization and evolutionary adaptation to temperature
• Mechanisms underlying the patterns of hibernation, torpor, dormancy, aestivation and diapause
• Effects of temperature on reproduction and development, growth, ageing and life-span
• Studies on modelling heat transfer between organisms and their environment
• The contributions of temperature to effects of climate change on animal species and man
• Studies of conservation biology and physiology related to temperature
• Behavioural and physiological regulation of body temperature including its pathophysiology and fever
• Medical applications of hypo- and hyperthermia
Article types:
• Original articles
• Review articles