{"title":"分析 Ag M4,5 EELS 边缘以研究银纳米粒子腐蚀。","authors":"J C Brennan, D A MacLaren","doi":"10.1111/jmi.13348","DOIUrl":null,"url":null,"abstract":"<p><p>Electron energy loss spectra collected from fresh and corroded silver nanoparticles are compared with those from a number of reference materials, focusing on the M<sub>4,5</sub> edge. Chemical shifts and changes in the energy loss near edge structure (ELNES) are described and found to be sufficient to distinguish metallic silver from chemically oxidised silver. The measurements, in conjunction with electron energy loss spectrum imaging, are used to assess the mechanisms for atmospheric corrosion of silver nanoparticles. We unambiguously assign the corrosion product under atmospheric conditions to be silver sulphide, but show the reaction process to be distinctly inhomogeneous, producing a variety of types of corroded particles. LAY DESCRIPTION: >Here, we use analytical electron microscopy to track the corrosion of silver nanoparticles and present chemical maps of the corrosion products. We show clear spectroscopic differences between metallic and corroded silver using the M<sub>4,5</sub> electron energy loss spectral feature, which is not commonly studied. Our study shows that corrosion is due to interactions with sulphur in the atmosphere; and the corrosion is not uniform, but appears to develop from specific points on the surface of the nanoparticles.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of the Ag M<sub>4,5</sub> EELS edge to study silver nanoparticle corrosion.\",\"authors\":\"J C Brennan, D A MacLaren\",\"doi\":\"10.1111/jmi.13348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Electron energy loss spectra collected from fresh and corroded silver nanoparticles are compared with those from a number of reference materials, focusing on the M<sub>4,5</sub> edge. Chemical shifts and changes in the energy loss near edge structure (ELNES) are described and found to be sufficient to distinguish metallic silver from chemically oxidised silver. The measurements, in conjunction with electron energy loss spectrum imaging, are used to assess the mechanisms for atmospheric corrosion of silver nanoparticles. We unambiguously assign the corrosion product under atmospheric conditions to be silver sulphide, but show the reaction process to be distinctly inhomogeneous, producing a variety of types of corroded particles. LAY DESCRIPTION: >Here, we use analytical electron microscopy to track the corrosion of silver nanoparticles and present chemical maps of the corrosion products. We show clear spectroscopic differences between metallic and corroded silver using the M<sub>4,5</sub> electron energy loss spectral feature, which is not commonly studied. Our study shows that corrosion is due to interactions with sulphur in the atmosphere; and the corrosion is not uniform, but appears to develop from specific points on the surface of the nanoparticles.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1111/jmi.13348\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/jmi.13348","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Analysis of the Ag M4,5 EELS edge to study silver nanoparticle corrosion.
Electron energy loss spectra collected from fresh and corroded silver nanoparticles are compared with those from a number of reference materials, focusing on the M4,5 edge. Chemical shifts and changes in the energy loss near edge structure (ELNES) are described and found to be sufficient to distinguish metallic silver from chemically oxidised silver. The measurements, in conjunction with electron energy loss spectrum imaging, are used to assess the mechanisms for atmospheric corrosion of silver nanoparticles. We unambiguously assign the corrosion product under atmospheric conditions to be silver sulphide, but show the reaction process to be distinctly inhomogeneous, producing a variety of types of corroded particles. LAY DESCRIPTION: >Here, we use analytical electron microscopy to track the corrosion of silver nanoparticles and present chemical maps of the corrosion products. We show clear spectroscopic differences between metallic and corroded silver using the M4,5 electron energy loss spectral feature, which is not commonly studied. Our study shows that corrosion is due to interactions with sulphur in the atmosphere; and the corrosion is not uniform, but appears to develop from specific points on the surface of the nanoparticles.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.