Bryce D. Beutler, Jonathan Lee, Sarah Edminster, Priya Rajagopalan, Thomas G. Clifford, Jonathan Maw, Gabriel Zada, Anna J. Mathew, Kyle M. Hurth, Drew Artrip, Adam T. Miller, Reza Assadsangabi
{"title":"颅内脑膜瘤:关于术前成像在管理中的作用的最新数据回顾。","authors":"Bryce D. Beutler, Jonathan Lee, Sarah Edminster, Priya Rajagopalan, Thomas G. Clifford, Jonathan Maw, Gabriel Zada, Anna J. Mathew, Kyle M. Hurth, Drew Artrip, Adam T. Miller, Reza Assadsangabi","doi":"10.1111/jon.13227","DOIUrl":null,"url":null,"abstract":"<p>Meningiomas are the most common neoplasms of the central nervous system, accounting for approximately 40% of all brain tumors. Surgical resection represents the mainstay of management for symptomatic lesions. Preoperative planning is largely informed by neuroimaging, which allows for evaluation of anatomy, degree of parenchymal invasion, and extent of peritumoral edema. Recent advances in imaging technology have expanded the purview of neuroradiologists, who play an increasingly important role in meningioma diagnosis and management. Tumor vascularity can now be determined using arterial spin labeling and dynamic susceptibility contrast-enhanced sequences, allowing the neurosurgeon or neurointerventionalist to assess patient candidacy for preoperative embolization. Meningioma consistency can be inferred based on signal intensity; emerging machine learning technologies may soon allow radiologists to predict consistency long before the patient enters the operating room. Perfusion imaging coupled with magnetic resonance spectroscopy can be used to distinguish meningiomas from malignant meningioma mimics. In this comprehensive review, we describe key features of meningiomas that can be established through neuroimaging, including size, location, vascularity, consistency, and, in some cases, histologic grade. We also summarize the role of advanced imaging techniques, including magnetic resonance perfusion and spectroscopy, for the preoperative evaluation of meningiomas. In addition, we describe the potential impact of emerging technologies, such as artificial intelligence and machine learning, on meningioma diagnosis and management. A strong foundation of knowledge in the latest meningioma imaging techniques will allow the neuroradiologist to help optimize preoperative planning and improve patient outcomes.</p>","PeriodicalId":16399,"journal":{"name":"Journal of Neuroimaging","volume":"34 5","pages":"527-547"},"PeriodicalIF":2.3000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jon.13227","citationCount":"0","resultStr":"{\"title\":\"Intracranial meningioma: A review of recent and emerging data on the utility of preoperative imaging for management\",\"authors\":\"Bryce D. Beutler, Jonathan Lee, Sarah Edminster, Priya Rajagopalan, Thomas G. Clifford, Jonathan Maw, Gabriel Zada, Anna J. Mathew, Kyle M. Hurth, Drew Artrip, Adam T. Miller, Reza Assadsangabi\",\"doi\":\"10.1111/jon.13227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Meningiomas are the most common neoplasms of the central nervous system, accounting for approximately 40% of all brain tumors. Surgical resection represents the mainstay of management for symptomatic lesions. Preoperative planning is largely informed by neuroimaging, which allows for evaluation of anatomy, degree of parenchymal invasion, and extent of peritumoral edema. Recent advances in imaging technology have expanded the purview of neuroradiologists, who play an increasingly important role in meningioma diagnosis and management. Tumor vascularity can now be determined using arterial spin labeling and dynamic susceptibility contrast-enhanced sequences, allowing the neurosurgeon or neurointerventionalist to assess patient candidacy for preoperative embolization. Meningioma consistency can be inferred based on signal intensity; emerging machine learning technologies may soon allow radiologists to predict consistency long before the patient enters the operating room. Perfusion imaging coupled with magnetic resonance spectroscopy can be used to distinguish meningiomas from malignant meningioma mimics. In this comprehensive review, we describe key features of meningiomas that can be established through neuroimaging, including size, location, vascularity, consistency, and, in some cases, histologic grade. We also summarize the role of advanced imaging techniques, including magnetic resonance perfusion and spectroscopy, for the preoperative evaluation of meningiomas. In addition, we describe the potential impact of emerging technologies, such as artificial intelligence and machine learning, on meningioma diagnosis and management. A strong foundation of knowledge in the latest meningioma imaging techniques will allow the neuroradiologist to help optimize preoperative planning and improve patient outcomes.</p>\",\"PeriodicalId\":16399,\"journal\":{\"name\":\"Journal of Neuroimaging\",\"volume\":\"34 5\",\"pages\":\"527-547\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jon.13227\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuroimaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jon.13227\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroimaging","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jon.13227","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Intracranial meningioma: A review of recent and emerging data on the utility of preoperative imaging for management
Meningiomas are the most common neoplasms of the central nervous system, accounting for approximately 40% of all brain tumors. Surgical resection represents the mainstay of management for symptomatic lesions. Preoperative planning is largely informed by neuroimaging, which allows for evaluation of anatomy, degree of parenchymal invasion, and extent of peritumoral edema. Recent advances in imaging technology have expanded the purview of neuroradiologists, who play an increasingly important role in meningioma diagnosis and management. Tumor vascularity can now be determined using arterial spin labeling and dynamic susceptibility contrast-enhanced sequences, allowing the neurosurgeon or neurointerventionalist to assess patient candidacy for preoperative embolization. Meningioma consistency can be inferred based on signal intensity; emerging machine learning technologies may soon allow radiologists to predict consistency long before the patient enters the operating room. Perfusion imaging coupled with magnetic resonance spectroscopy can be used to distinguish meningiomas from malignant meningioma mimics. In this comprehensive review, we describe key features of meningiomas that can be established through neuroimaging, including size, location, vascularity, consistency, and, in some cases, histologic grade. We also summarize the role of advanced imaging techniques, including magnetic resonance perfusion and spectroscopy, for the preoperative evaluation of meningiomas. In addition, we describe the potential impact of emerging technologies, such as artificial intelligence and machine learning, on meningioma diagnosis and management. A strong foundation of knowledge in the latest meningioma imaging techniques will allow the neuroradiologist to help optimize preoperative planning and improve patient outcomes.
期刊介绍:
Start reading the Journal of Neuroimaging to learn the latest neurological imaging techniques. The peer-reviewed research is written in a practical clinical context, giving you the information you need on:
MRI
CT
Carotid Ultrasound and TCD
SPECT
PET
Endovascular Surgical Neuroradiology
Functional MRI
Xenon CT
and other new and upcoming neuroscientific modalities.The Journal of Neuroimaging addresses the full spectrum of human nervous system disease, including stroke, neoplasia, degenerating and demyelinating disease, epilepsy, tumors, lesions, infectious disease, cerebral vascular arterial diseases, toxic-metabolic disease, psychoses, dementias, heredo-familial disease, and trauma.Offering original research, review articles, case reports, neuroimaging CPCs, and evaluations of instruments and technology relevant to the nervous system, the Journal of Neuroimaging focuses on useful clinical developments and applications, tested techniques and interpretations, patient care, diagnostics, and therapeutics. Start reading today!