{"title":"用于引导骨质疏松性骨再生的氧化石墨烯装饰微孔磺化聚醚醚酮。","authors":"","doi":"10.1016/j.jconrel.2024.07.054","DOIUrl":null,"url":null,"abstract":"<div><p>Recent studies have indicated that the nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome is an ideal therapeutic target for osteoporosis because it affects the differentiation of osteoblasts and osteoclasts. RNA sequencing utilizing multifunctional graphene oxide (GO) nanosheets revealed a correlation between GO nanomaterials and the NLRP3 inflammasome, as well as osteogenic genes in macrophages. This study aimed to construct a bone microenvironment-responsive multifunctional two-dimensional GO coating on the surface of microporous sulfonated polyetheretherketone (SPEEK) via polydopamine modification (SPEEK@PDA-GO). In vitro analysis showed that the SPEEK@PDA-GO implants weakened the STAT3-mediated NLRP3/caspase-1/IL-1β signaling pathway in macrophages and subsequently prevented the formation of an extracellular inflammatory microenvironment, which is crucial for osteoclastogenesis. SPEEK@PDA-GO displayed significantly higher expression of M2 macrophage markers and osteogenic genes, indicating that the multifunctional GO nanosheets could facilitate bone regeneration via their immunomodulatory properties. The ability of SPEEK@PDA-GO to stimulate new bone formation and block bone loss caused by estrogen loss due to ovariectomy was also analyzed. The findings of this study offer valuable information on the possible involvement of the NLRP3 inflammasome in the interaction between the immune system and bone health in patients with osteoporosis.</p></div>","PeriodicalId":15450,"journal":{"name":"Journal of Controlled Release","volume":null,"pages":null},"PeriodicalIF":10.5000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0168365924005091/pdfft?md5=c88e137bb3f438b1414274dedcdd0ce7&pid=1-s2.0-S0168365924005091-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Graphene oxide-decorated microporous sulfonated polyetheretherketone for guiding osteoporotic bone regeneration\",\"authors\":\"\",\"doi\":\"10.1016/j.jconrel.2024.07.054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recent studies have indicated that the nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome is an ideal therapeutic target for osteoporosis because it affects the differentiation of osteoblasts and osteoclasts. RNA sequencing utilizing multifunctional graphene oxide (GO) nanosheets revealed a correlation between GO nanomaterials and the NLRP3 inflammasome, as well as osteogenic genes in macrophages. This study aimed to construct a bone microenvironment-responsive multifunctional two-dimensional GO coating on the surface of microporous sulfonated polyetheretherketone (SPEEK) via polydopamine modification (SPEEK@PDA-GO). In vitro analysis showed that the SPEEK@PDA-GO implants weakened the STAT3-mediated NLRP3/caspase-1/IL-1β signaling pathway in macrophages and subsequently prevented the formation of an extracellular inflammatory microenvironment, which is crucial for osteoclastogenesis. SPEEK@PDA-GO displayed significantly higher expression of M2 macrophage markers and osteogenic genes, indicating that the multifunctional GO nanosheets could facilitate bone regeneration via their immunomodulatory properties. The ability of SPEEK@PDA-GO to stimulate new bone formation and block bone loss caused by estrogen loss due to ovariectomy was also analyzed. The findings of this study offer valuable information on the possible involvement of the NLRP3 inflammasome in the interaction between the immune system and bone health in patients with osteoporosis.</p></div>\",\"PeriodicalId\":15450,\"journal\":{\"name\":\"Journal of Controlled Release\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.5000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0168365924005091/pdfft?md5=c88e137bb3f438b1414274dedcdd0ce7&pid=1-s2.0-S0168365924005091-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Controlled Release\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168365924005091\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Controlled Release","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168365924005091","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Graphene oxide-decorated microporous sulfonated polyetheretherketone for guiding osteoporotic bone regeneration
Recent studies have indicated that the nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome is an ideal therapeutic target for osteoporosis because it affects the differentiation of osteoblasts and osteoclasts. RNA sequencing utilizing multifunctional graphene oxide (GO) nanosheets revealed a correlation between GO nanomaterials and the NLRP3 inflammasome, as well as osteogenic genes in macrophages. This study aimed to construct a bone microenvironment-responsive multifunctional two-dimensional GO coating on the surface of microporous sulfonated polyetheretherketone (SPEEK) via polydopamine modification (SPEEK@PDA-GO). In vitro analysis showed that the SPEEK@PDA-GO implants weakened the STAT3-mediated NLRP3/caspase-1/IL-1β signaling pathway in macrophages and subsequently prevented the formation of an extracellular inflammatory microenvironment, which is crucial for osteoclastogenesis. SPEEK@PDA-GO displayed significantly higher expression of M2 macrophage markers and osteogenic genes, indicating that the multifunctional GO nanosheets could facilitate bone regeneration via their immunomodulatory properties. The ability of SPEEK@PDA-GO to stimulate new bone formation and block bone loss caused by estrogen loss due to ovariectomy was also analyzed. The findings of this study offer valuable information on the possible involvement of the NLRP3 inflammasome in the interaction between the immune system and bone health in patients with osteoporosis.
期刊介绍:
The Journal of Controlled Release (JCR) proudly serves as the Official Journal of the Controlled Release Society and the Japan Society of Drug Delivery System.
Dedicated to the broad field of delivery science and technology, JCR publishes high-quality research articles covering drug delivery systems and all facets of formulations. This includes the physicochemical and biological properties of drugs, design and characterization of dosage forms, release mechanisms, in vivo testing, and formulation research and development across pharmaceutical, diagnostic, agricultural, environmental, cosmetic, and food industries.
Priority is given to manuscripts that contribute to the fundamental understanding of principles or demonstrate the advantages of novel technologies in terms of safety and efficacy over current clinical standards. JCR strives to be a leading platform for advancements in delivery science and technology.