基于三方异构网络元路径聚合的疾病-代谢物关联预测

IF 3.9 2区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Wenzhi Liu, Pengli Lu
{"title":"基于三方异构网络元路径聚合的疾病-代谢物关联预测","authors":"Wenzhi Liu, Pengli Lu","doi":"10.1007/s12539-024-00645-8","DOIUrl":null,"url":null,"abstract":"<p><p>The exploration of the interactions between diseases and metabolites holds significant implications for the diagnosis and treatment of diseases. However, traditional experimental methods are time-consuming and costly, and current computational methods often overlook the influence of other biological entities on both. In light of these limitations, we proposed a novel deep learning model based on metapath aggregation of tripartite heterogeneous networks (MAHN) to explore disease-related metabolites. Specifically, we introduced microbes to construct a tripartite heterogeneous network and employed graph convolutional network and enhanced GraphSAGE to learn node features with metapath length 3. Additionally, we utilized node-level and semantic-level attention mechanisms, a more granular approach, to aggregate node features with metapath length 2. Finally, the reconstructed association probability is obtained by fusing features from different metapaths into the bilinear decoder. The experiments demonstrate that the proposed MAHN model achieved superior performance in five-fold cross-validation with Acc (91.85%), Pre (90.48%), Recall (93.53%), F1 (91.94%), AUC (97.39%), and AUPR (97.47%), outperforming four state-of-the-art algorithms. Case studies on two complex diseases, irritable bowel syndrome and obesity, further validate the predictive results, and the MAHN model is a trustworthy prediction tool for discovering potential metabolites. Moreover, deep learning models integrating multi-omics data represent the future mainstream direction for predicting disease-related biological entities.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":"829-843"},"PeriodicalIF":3.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting Disease-Metabolite Associations Based on the Metapath Aggregation of Tripartite Heterogeneous Networks.\",\"authors\":\"Wenzhi Liu, Pengli Lu\",\"doi\":\"10.1007/s12539-024-00645-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The exploration of the interactions between diseases and metabolites holds significant implications for the diagnosis and treatment of diseases. However, traditional experimental methods are time-consuming and costly, and current computational methods often overlook the influence of other biological entities on both. In light of these limitations, we proposed a novel deep learning model based on metapath aggregation of tripartite heterogeneous networks (MAHN) to explore disease-related metabolites. Specifically, we introduced microbes to construct a tripartite heterogeneous network and employed graph convolutional network and enhanced GraphSAGE to learn node features with metapath length 3. Additionally, we utilized node-level and semantic-level attention mechanisms, a more granular approach, to aggregate node features with metapath length 2. Finally, the reconstructed association probability is obtained by fusing features from different metapaths into the bilinear decoder. The experiments demonstrate that the proposed MAHN model achieved superior performance in five-fold cross-validation with Acc (91.85%), Pre (90.48%), Recall (93.53%), F1 (91.94%), AUC (97.39%), and AUPR (97.47%), outperforming four state-of-the-art algorithms. Case studies on two complex diseases, irritable bowel syndrome and obesity, further validate the predictive results, and the MAHN model is a trustworthy prediction tool for discovering potential metabolites. Moreover, deep learning models integrating multi-omics data represent the future mainstream direction for predicting disease-related biological entities.</p>\",\"PeriodicalId\":13670,\"journal\":{\"name\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"volume\":\" \",\"pages\":\"829-843\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12539-024-00645-8\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Sciences: Computational Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12539-024-00645-8","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

探索疾病与代谢物之间的相互作用对疾病的诊断和治疗具有重要意义。然而,传统的实验方法耗时长、成本高,目前的计算方法往往忽略了其他生物实体对两者的影响。鉴于这些局限性,我们提出了一种基于三方异构网络元路径聚合(MAHN)的新型深度学习模型来探索疾病相关代谢物。具体来说,我们引入微生物来构建三方异构网络,并采用图卷积网络和增强型 GraphSAGE 来学习元路径长度为 3 的节点特征;此外,我们还利用节点级和语义级注意力机制(一种更精细的方法)来聚合元路径长度为 2 的节点特征。实验证明,所提出的 MAHN 模型在五倍交叉验证中取得了优异的性能,Acc(91.85%)、Pre(90.48%)、Recall(93.53%)、F1(91.94%)、AUC(97.39%)和 AUPR(97.47%)均优于四种最先进的算法。对肠易激综合征和肥胖症这两种复杂疾病的案例研究进一步验证了预测结果,MAHN 模型是发现潜在代谢物的值得信赖的预测工具。此外,整合多组学数据的深度学习模型代表了预测疾病相关生物实体的未来主流方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Predicting Disease-Metabolite Associations Based on the Metapath Aggregation of Tripartite Heterogeneous Networks.

Predicting Disease-Metabolite Associations Based on the Metapath Aggregation of Tripartite Heterogeneous Networks.

The exploration of the interactions between diseases and metabolites holds significant implications for the diagnosis and treatment of diseases. However, traditional experimental methods are time-consuming and costly, and current computational methods often overlook the influence of other biological entities on both. In light of these limitations, we proposed a novel deep learning model based on metapath aggregation of tripartite heterogeneous networks (MAHN) to explore disease-related metabolites. Specifically, we introduced microbes to construct a tripartite heterogeneous network and employed graph convolutional network and enhanced GraphSAGE to learn node features with metapath length 3. Additionally, we utilized node-level and semantic-level attention mechanisms, a more granular approach, to aggregate node features with metapath length 2. Finally, the reconstructed association probability is obtained by fusing features from different metapaths into the bilinear decoder. The experiments demonstrate that the proposed MAHN model achieved superior performance in five-fold cross-validation with Acc (91.85%), Pre (90.48%), Recall (93.53%), F1 (91.94%), AUC (97.39%), and AUPR (97.47%), outperforming four state-of-the-art algorithms. Case studies on two complex diseases, irritable bowel syndrome and obesity, further validate the predictive results, and the MAHN model is a trustworthy prediction tool for discovering potential metabolites. Moreover, deep learning models integrating multi-omics data represent the future mainstream direction for predicting disease-related biological entities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Interdisciplinary Sciences: Computational Life Sciences
Interdisciplinary Sciences: Computational Life Sciences MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
8.60
自引率
4.20%
发文量
55
期刊介绍: Interdisciplinary Sciences--Computational Life Sciences aims to cover the most recent and outstanding developments in interdisciplinary areas of sciences, especially focusing on computational life sciences, an area that is enjoying rapid development at the forefront of scientific research and technology. The journal publishes original papers of significant general interest covering recent research and developments. Articles will be published rapidly by taking full advantage of internet technology for online submission and peer-reviewing of manuscripts, and then by publishing OnlineFirstTM through SpringerLink even before the issue is built or sent to the printer. The editorial board consists of many leading scientists with international reputation, among others, Luc Montagnier (UNESCO, France), Dennis Salahub (University of Calgary, Canada), Weitao Yang (Duke University, USA). Prof. Dongqing Wei at the Shanghai Jiatong University is appointed as the editor-in-chief; he made important contributions in bioinformatics and computational physics and is best known for his ground-breaking works on the theory of ferroelectric liquids. With the help from a team of associate editors and the editorial board, an international journal with sound reputation shall be created.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信