{"title":"基于三方异构网络元路径聚合的疾病-代谢物关联预测","authors":"Wenzhi Liu, Pengli Lu","doi":"10.1007/s12539-024-00645-8","DOIUrl":null,"url":null,"abstract":"<p><p>The exploration of the interactions between diseases and metabolites holds significant implications for the diagnosis and treatment of diseases. However, traditional experimental methods are time-consuming and costly, and current computational methods often overlook the influence of other biological entities on both. In light of these limitations, we proposed a novel deep learning model based on metapath aggregation of tripartite heterogeneous networks (MAHN) to explore disease-related metabolites. Specifically, we introduced microbes to construct a tripartite heterogeneous network and employed graph convolutional network and enhanced GraphSAGE to learn node features with metapath length 3. Additionally, we utilized node-level and semantic-level attention mechanisms, a more granular approach, to aggregate node features with metapath length 2. Finally, the reconstructed association probability is obtained by fusing features from different metapaths into the bilinear decoder. The experiments demonstrate that the proposed MAHN model achieved superior performance in five-fold cross-validation with Acc (91.85%), Pre (90.48%), Recall (93.53%), F1 (91.94%), AUC (97.39%), and AUPR (97.47%), outperforming four state-of-the-art algorithms. Case studies on two complex diseases, irritable bowel syndrome and obesity, further validate the predictive results, and the MAHN model is a trustworthy prediction tool for discovering potential metabolites. Moreover, deep learning models integrating multi-omics data represent the future mainstream direction for predicting disease-related biological entities.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":"829-843"},"PeriodicalIF":3.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting Disease-Metabolite Associations Based on the Metapath Aggregation of Tripartite Heterogeneous Networks.\",\"authors\":\"Wenzhi Liu, Pengli Lu\",\"doi\":\"10.1007/s12539-024-00645-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The exploration of the interactions between diseases and metabolites holds significant implications for the diagnosis and treatment of diseases. However, traditional experimental methods are time-consuming and costly, and current computational methods often overlook the influence of other biological entities on both. In light of these limitations, we proposed a novel deep learning model based on metapath aggregation of tripartite heterogeneous networks (MAHN) to explore disease-related metabolites. Specifically, we introduced microbes to construct a tripartite heterogeneous network and employed graph convolutional network and enhanced GraphSAGE to learn node features with metapath length 3. Additionally, we utilized node-level and semantic-level attention mechanisms, a more granular approach, to aggregate node features with metapath length 2. Finally, the reconstructed association probability is obtained by fusing features from different metapaths into the bilinear decoder. The experiments demonstrate that the proposed MAHN model achieved superior performance in five-fold cross-validation with Acc (91.85%), Pre (90.48%), Recall (93.53%), F1 (91.94%), AUC (97.39%), and AUPR (97.47%), outperforming four state-of-the-art algorithms. Case studies on two complex diseases, irritable bowel syndrome and obesity, further validate the predictive results, and the MAHN model is a trustworthy prediction tool for discovering potential metabolites. Moreover, deep learning models integrating multi-omics data represent the future mainstream direction for predicting disease-related biological entities.</p>\",\"PeriodicalId\":13670,\"journal\":{\"name\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"volume\":\" \",\"pages\":\"829-843\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12539-024-00645-8\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Sciences: Computational Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12539-024-00645-8","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Predicting Disease-Metabolite Associations Based on the Metapath Aggregation of Tripartite Heterogeneous Networks.
The exploration of the interactions between diseases and metabolites holds significant implications for the diagnosis and treatment of diseases. However, traditional experimental methods are time-consuming and costly, and current computational methods often overlook the influence of other biological entities on both. In light of these limitations, we proposed a novel deep learning model based on metapath aggregation of tripartite heterogeneous networks (MAHN) to explore disease-related metabolites. Specifically, we introduced microbes to construct a tripartite heterogeneous network and employed graph convolutional network and enhanced GraphSAGE to learn node features with metapath length 3. Additionally, we utilized node-level and semantic-level attention mechanisms, a more granular approach, to aggregate node features with metapath length 2. Finally, the reconstructed association probability is obtained by fusing features from different metapaths into the bilinear decoder. The experiments demonstrate that the proposed MAHN model achieved superior performance in five-fold cross-validation with Acc (91.85%), Pre (90.48%), Recall (93.53%), F1 (91.94%), AUC (97.39%), and AUPR (97.47%), outperforming four state-of-the-art algorithms. Case studies on two complex diseases, irritable bowel syndrome and obesity, further validate the predictive results, and the MAHN model is a trustworthy prediction tool for discovering potential metabolites. Moreover, deep learning models integrating multi-omics data represent the future mainstream direction for predicting disease-related biological entities.
期刊介绍:
Interdisciplinary Sciences--Computational Life Sciences aims to cover the most recent and outstanding developments in interdisciplinary areas of sciences, especially focusing on computational life sciences, an area that is enjoying rapid development at the forefront of scientific research and technology.
The journal publishes original papers of significant general interest covering recent research and developments. Articles will be published rapidly by taking full advantage of internet technology for online submission and peer-reviewing of manuscripts, and then by publishing OnlineFirstTM through SpringerLink even before the issue is built or sent to the printer.
The editorial board consists of many leading scientists with international reputation, among others, Luc Montagnier (UNESCO, France), Dennis Salahub (University of Calgary, Canada), Weitao Yang (Duke University, USA). Prof. Dongqing Wei at the Shanghai Jiatong University is appointed as the editor-in-chief; he made important contributions in bioinformatics and computational physics and is best known for his ground-breaking works on the theory of ferroelectric liquids. With the help from a team of associate editors and the editorial board, an international journal with sound reputation shall be created.