{"title":"造血干细胞移植过程(I):动员、采集、操作和冷冻保存造血干细胞移植物。","authors":"Harold Atkins","doi":"10.1016/B978-0-323-90242-7.00005-5","DOIUrl":null,"url":null,"abstract":"<p><p>Most hematopoietic stem cell transplants performed for an autoimmune disease of the nervous system, use the patient's hematopoietic stem cells (HSCs). Obtaining an HSC graft is the first step of the process. This typically involves mobilization of bone marrow HSCs into the circulation using high-dose cyclophosphamide followed by filgrastim, a drug based on granulocyte colony-stimulating factor. Toxicity from these agents is usually manageable and adverse events are less severe and less frequent than those experienced during the hematopoietic stem cell transplant. Following mobilization, HSCs are collected from the circulation by leukapheresis. Some centers deplete the graft of lymphocytes using an ex vivo immunomagnetic selection procedure. HSC grafts are cryopreserved until required for the stem cell transplant. Quality testing of the graft ensures sterility and it contains sufficient HSCs and hematopoietic progenitors. The clinical and laboratory aspects of HSC graft mobilization, collection, and storage must meet standards set by national regulatory bodies and accredited by international professional standards organizations. Experienced stem cell transplant teams are important for minimizing procedural toxicity and enhancing successful collection.</p>","PeriodicalId":12907,"journal":{"name":"Handbook of clinical neurology","volume":"202 ","pages":"105-115"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The HSCT procedure (I): Mobilization, collection, manipulation, and cryopreservation of a HSC graft.\",\"authors\":\"Harold Atkins\",\"doi\":\"10.1016/B978-0-323-90242-7.00005-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Most hematopoietic stem cell transplants performed for an autoimmune disease of the nervous system, use the patient's hematopoietic stem cells (HSCs). Obtaining an HSC graft is the first step of the process. This typically involves mobilization of bone marrow HSCs into the circulation using high-dose cyclophosphamide followed by filgrastim, a drug based on granulocyte colony-stimulating factor. Toxicity from these agents is usually manageable and adverse events are less severe and less frequent than those experienced during the hematopoietic stem cell transplant. Following mobilization, HSCs are collected from the circulation by leukapheresis. Some centers deplete the graft of lymphocytes using an ex vivo immunomagnetic selection procedure. HSC grafts are cryopreserved until required for the stem cell transplant. Quality testing of the graft ensures sterility and it contains sufficient HSCs and hematopoietic progenitors. The clinical and laboratory aspects of HSC graft mobilization, collection, and storage must meet standards set by national regulatory bodies and accredited by international professional standards organizations. Experienced stem cell transplant teams are important for minimizing procedural toxicity and enhancing successful collection.</p>\",\"PeriodicalId\":12907,\"journal\":{\"name\":\"Handbook of clinical neurology\",\"volume\":\"202 \",\"pages\":\"105-115\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Handbook of clinical neurology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/B978-0-323-90242-7.00005-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Handbook of clinical neurology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/B978-0-323-90242-7.00005-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
The HSCT procedure (I): Mobilization, collection, manipulation, and cryopreservation of a HSC graft.
Most hematopoietic stem cell transplants performed for an autoimmune disease of the nervous system, use the patient's hematopoietic stem cells (HSCs). Obtaining an HSC graft is the first step of the process. This typically involves mobilization of bone marrow HSCs into the circulation using high-dose cyclophosphamide followed by filgrastim, a drug based on granulocyte colony-stimulating factor. Toxicity from these agents is usually manageable and adverse events are less severe and less frequent than those experienced during the hematopoietic stem cell transplant. Following mobilization, HSCs are collected from the circulation by leukapheresis. Some centers deplete the graft of lymphocytes using an ex vivo immunomagnetic selection procedure. HSC grafts are cryopreserved until required for the stem cell transplant. Quality testing of the graft ensures sterility and it contains sufficient HSCs and hematopoietic progenitors. The clinical and laboratory aspects of HSC graft mobilization, collection, and storage must meet standards set by national regulatory bodies and accredited by international professional standards organizations. Experienced stem cell transplant teams are important for minimizing procedural toxicity and enhancing successful collection.
期刊介绍:
The Handbook of Clinical Neurology (HCN) was originally conceived and edited by Pierre Vinken and George Bruyn as a prestigious, multivolume reference work that would cover all the disorders encountered by clinicians and researchers engaged in neurology and allied fields. The first series of the Handbook (Volumes 1-44) was published between 1968 and 1982 and was followed by a second series (Volumes 45-78), guided by the same editors, which concluded in 2002. By that time, the Handbook had come to represent one of the largest scientific works ever published. In 2002, Professors Michael J. Aminoff, François Boller, and Dick F. Swaab took on the responsibility of supervising the third (current) series, the first volumes of which published in 2003. They have designed this series to encompass both clinical neurology and also the basic and clinical neurosciences that are its underpinning. Given the enormity and complexity of the accumulating literature, it is almost impossible to keep abreast of developments in the field, thus providing the raison d''être for the series. The series will thus appeal to clinicians and investigators alike, providing to each an added dimension. Now, more than 140 volumes after it began, the Handbook of Clinical Neurology series has an unparalleled reputation for providing the latest information on fundamental research on the operation of the nervous system in health and disease, comprehensive clinical information on neurological and related disorders, and up-to-date treatment protocols.