Aleksandr Veshchitskii, Polina Shkorbatova, Natalia Merkulyeva
{"title":"兔脊髓神经化学图谱。","authors":"Aleksandr Veshchitskii, Polina Shkorbatova, Natalia Merkulyeva","doi":"10.1007/s00429-024-02842-z","DOIUrl":null,"url":null,"abstract":"<p><p>Complex neurophysiological and morphologic experiments require suitable animal models for investigation. The rabbit is one of the most successful models for studying spinal cord functions owing to its substantial size. However, achieving precise surgical access to specific spinal regions requires a thorough understanding of the spinal cord's cytoarchitectonic structure and its spatial relationship with the vertebrae. The comprehensive anatomo-neurochemical atlases of the spinal cord are invaluable for attaining such insight. While such atlases exist for some rodents and primates, none exist for rabbits. We have developed a spinal cord atlas for rabbits to bridge this gap. Utilizing various neurochemical markers-including antibodies to NeuN, calbindin 28 kDa, parvalbumin, choline acetyltransferase, nitric oxide synthase, and non-phosphorylated heavy-chain neurofilaments (SMI-32 antibody)-we present the visualization of diverse spinal neuronal populations, various spinal cord metrics, stereotaxic maps of transverse slices for each spinal segment, and a spatial map detailing the intricate relationship between the spinal cord and the vertebrae across its entire length.</p>","PeriodicalId":9145,"journal":{"name":"Brain Structure & Function","volume":" ","pages":"2011-2027"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neurochemical atlas of the rabbit spinal cord.\",\"authors\":\"Aleksandr Veshchitskii, Polina Shkorbatova, Natalia Merkulyeva\",\"doi\":\"10.1007/s00429-024-02842-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Complex neurophysiological and morphologic experiments require suitable animal models for investigation. The rabbit is one of the most successful models for studying spinal cord functions owing to its substantial size. However, achieving precise surgical access to specific spinal regions requires a thorough understanding of the spinal cord's cytoarchitectonic structure and its spatial relationship with the vertebrae. The comprehensive anatomo-neurochemical atlases of the spinal cord are invaluable for attaining such insight. While such atlases exist for some rodents and primates, none exist for rabbits. We have developed a spinal cord atlas for rabbits to bridge this gap. Utilizing various neurochemical markers-including antibodies to NeuN, calbindin 28 kDa, parvalbumin, choline acetyltransferase, nitric oxide synthase, and non-phosphorylated heavy-chain neurofilaments (SMI-32 antibody)-we present the visualization of diverse spinal neuronal populations, various spinal cord metrics, stereotaxic maps of transverse slices for each spinal segment, and a spatial map detailing the intricate relationship between the spinal cord and the vertebrae across its entire length.</p>\",\"PeriodicalId\":9145,\"journal\":{\"name\":\"Brain Structure & Function\",\"volume\":\" \",\"pages\":\"2011-2027\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Structure & Function\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00429-024-02842-z\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ANATOMY & MORPHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Structure & Function","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00429-024-02842-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
Complex neurophysiological and morphologic experiments require suitable animal models for investigation. The rabbit is one of the most successful models for studying spinal cord functions owing to its substantial size. However, achieving precise surgical access to specific spinal regions requires a thorough understanding of the spinal cord's cytoarchitectonic structure and its spatial relationship with the vertebrae. The comprehensive anatomo-neurochemical atlases of the spinal cord are invaluable for attaining such insight. While such atlases exist for some rodents and primates, none exist for rabbits. We have developed a spinal cord atlas for rabbits to bridge this gap. Utilizing various neurochemical markers-including antibodies to NeuN, calbindin 28 kDa, parvalbumin, choline acetyltransferase, nitric oxide synthase, and non-phosphorylated heavy-chain neurofilaments (SMI-32 antibody)-we present the visualization of diverse spinal neuronal populations, various spinal cord metrics, stereotaxic maps of transverse slices for each spinal segment, and a spatial map detailing the intricate relationship between the spinal cord and the vertebrae across its entire length.
期刊介绍:
Brain Structure & Function publishes research that provides insight into brain structure−function relationships. Studies published here integrate data spanning from molecular, cellular, developmental, and systems architecture to the neuroanatomy of behavior and cognitive functions. Manuscripts with focus on the spinal cord or the peripheral nervous system are not accepted for publication. Manuscripts with focus on diseases, animal models of diseases, or disease-related mechanisms are only considered for publication, if the findings provide novel insight into the organization and mechanisms of normal brain structure and function.