含有 7 种益生菌株的补充食物(Honeybeeotic)对蜜蜂生理和免疫反应的影响:血淋巴细胞学、酚氧化酶活性和肠道微生物组分析。

IF 4.3 2区 生物学 Q1 BIOLOGY
Patrizia Robino, Livio Galosi, Alessandro Bellato, Silvia Vincenzetti, Elena Gonella, Ilario Ferrocino, Evelina Serri, Lucia Biagini, Alessandra Roncarati, Patrizia Nebbia, Chiara Menzio, Giacomo Rossi
{"title":"含有 7 种益生菌株的补充食物(Honeybeeotic)对蜜蜂生理和免疫反应的影响:血淋巴细胞学、酚氧化酶活性和肠道微生物组分析。","authors":"Patrizia Robino, Livio Galosi, Alessandro Bellato, Silvia Vincenzetti, Elena Gonella, Ilario Ferrocino, Evelina Serri, Lucia Biagini, Alessandra Roncarati, Patrizia Nebbia, Chiara Menzio, Giacomo Rossi","doi":"10.1186/s40659-024-00533-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>In this study, a probiotic mixture (Honeybeeotic) consisting of seven bacterial strains isolated from a unique population of honeybees (Apis mellifera ligustica) was used. That honeybee population was located in the Roti Abbey locality of the Marche Region in Italy, an area isolated from human activities, and genetic contamination from other honeybee populations. The aim was to investigate the effects of this probiotic mixture on the innate immunity and intestinal microbiome of healthy common honeybees in two hives of the same apiary. Hive A received a diet of 50% glucose syrup, while hive B received the same syrup supplemented with the probiotics, both administered daily for 1 month. To determine whether the probiotic altered the immune response, phenoloxidase activity and hemolymph cellular subtype count were investigated. Additionally, metagenomic approaches were used to analyze the effects on gut microbiota composition and function, considering the critical role the gut microbiota plays in modulating host physiology.</p><p><strong>Results: </strong>The results revealed differences in hemocyte populations between the two hives, as hive A exhibited higher counts of oenocytoids and granulocytes. These findings indicated that the dietary supplementation with the probiotic mixture was safe and well-tolerated. Furthermore, phenoloxidase activity significantly decreased in hive B (1.75 ± 0.19 U/mg) compared to hive A (3.62 ± 0.44 U/mg, p < 0.005), suggesting an improved state of well-being in the honeybees, as they did not require activation of immune defense mechanisms. Regarding the microbiome composition, the probiotic modulated the gut microbiota in hive B compared to the control, retaining core microbiota components while causing both positive and negative variations. Notably, several genes, particularly KEGG genes involved in amino acid metabolism, carbohydrate metabolism, and branched-chain amino acid (BCAA) transport, were more abundant in the probiotic-fed group, suggesting an effective nutritional supplement for the host.</p><p><strong>Conclusions: </strong>This study advocated that feeding with this probiotic mixture induces beneficial immunological effects and promoted a balanced gut microbiota with enhanced metabolic activities related to digestion. The use of highly selected probiotics was shown to contribute to the overall well-being of the honeybees, improving their immune response and gut health.</p>","PeriodicalId":9084,"journal":{"name":"Biological Research","volume":"57 1","pages":"50"},"PeriodicalIF":4.3000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11304726/pdf/","citationCount":"0","resultStr":"{\"title\":\"Effects of a supplemented diet containing 7 probiotic strains (Honeybeeotic) on honeybee physiology and immune response: analysis of hemolymph cytology, phenoloxidase activity, and gut microbiome.\",\"authors\":\"Patrizia Robino, Livio Galosi, Alessandro Bellato, Silvia Vincenzetti, Elena Gonella, Ilario Ferrocino, Evelina Serri, Lucia Biagini, Alessandra Roncarati, Patrizia Nebbia, Chiara Menzio, Giacomo Rossi\",\"doi\":\"10.1186/s40659-024-00533-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>In this study, a probiotic mixture (Honeybeeotic) consisting of seven bacterial strains isolated from a unique population of honeybees (Apis mellifera ligustica) was used. That honeybee population was located in the Roti Abbey locality of the Marche Region in Italy, an area isolated from human activities, and genetic contamination from other honeybee populations. The aim was to investigate the effects of this probiotic mixture on the innate immunity and intestinal microbiome of healthy common honeybees in two hives of the same apiary. Hive A received a diet of 50% glucose syrup, while hive B received the same syrup supplemented with the probiotics, both administered daily for 1 month. To determine whether the probiotic altered the immune response, phenoloxidase activity and hemolymph cellular subtype count were investigated. Additionally, metagenomic approaches were used to analyze the effects on gut microbiota composition and function, considering the critical role the gut microbiota plays in modulating host physiology.</p><p><strong>Results: </strong>The results revealed differences in hemocyte populations between the two hives, as hive A exhibited higher counts of oenocytoids and granulocytes. These findings indicated that the dietary supplementation with the probiotic mixture was safe and well-tolerated. Furthermore, phenoloxidase activity significantly decreased in hive B (1.75 ± 0.19 U/mg) compared to hive A (3.62 ± 0.44 U/mg, p < 0.005), suggesting an improved state of well-being in the honeybees, as they did not require activation of immune defense mechanisms. Regarding the microbiome composition, the probiotic modulated the gut microbiota in hive B compared to the control, retaining core microbiota components while causing both positive and negative variations. Notably, several genes, particularly KEGG genes involved in amino acid metabolism, carbohydrate metabolism, and branched-chain amino acid (BCAA) transport, were more abundant in the probiotic-fed group, suggesting an effective nutritional supplement for the host.</p><p><strong>Conclusions: </strong>This study advocated that feeding with this probiotic mixture induces beneficial immunological effects and promoted a balanced gut microbiota with enhanced metabolic activities related to digestion. The use of highly selected probiotics was shown to contribute to the overall well-being of the honeybees, improving their immune response and gut health.</p>\",\"PeriodicalId\":9084,\"journal\":{\"name\":\"Biological Research\",\"volume\":\"57 1\",\"pages\":\"50\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11304726/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s40659-024-00533-x\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40659-024-00533-x","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

研究背景在这项研究中,使用了一种益生菌混合物(蜜蜂益生菌),该混合物由从蜜蜂(Apis mellifera ligustica)独特种群中分离出来的七种细菌菌株组成。该蜜蜂种群位于意大利马尔凯大区的罗蒂阿贝地区,该地区与人类活动和其他蜜蜂种群的遗传污染隔绝。目的是研究这种益生菌混合物对同一养蜂场两个蜂巢中健康普通蜜蜂的先天免疫和肠道微生物组的影响。蜂巢 A 的食物是 50%的葡萄糖浆,而蜂巢 B 的食物也是同样的葡萄糖浆,并添加了益生菌,每天给药,持续 1 个月。为了确定益生菌是否改变了免疫反应,对酚氧化酶活性和血淋巴细胞亚型计数进行了调查。此外,考虑到肠道微生物群在调节宿主生理方面的关键作用,还采用了元基因组学方法来分析对肠道微生物群组成和功能的影响:结果表明,两个蜂巢的血细胞数量存在差异,A 蜂巢的卵母细胞和粒细胞数量更高。这些结果表明,膳食中补充益生菌混合物是安全的,而且耐受性良好。此外,与蜂巢 A(3.62 ± 0.44 U/mg, p)相比,蜂巢 B 的酚氧化酶活性(1.75 ± 0.19 U/mg )明显降低:这项研究表明,饲喂这种益生菌混合物可诱导有益的免疫效应,促进肠道微生物群的平衡,增强与消化有关的代谢活动。研究表明,使用精选的益生菌有助于蜜蜂的整体健康,改善其免疫反应和肠道健康。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effects of a supplemented diet containing 7 probiotic strains (Honeybeeotic) on honeybee physiology and immune response: analysis of hemolymph cytology, phenoloxidase activity, and gut microbiome.

Background: In this study, a probiotic mixture (Honeybeeotic) consisting of seven bacterial strains isolated from a unique population of honeybees (Apis mellifera ligustica) was used. That honeybee population was located in the Roti Abbey locality of the Marche Region in Italy, an area isolated from human activities, and genetic contamination from other honeybee populations. The aim was to investigate the effects of this probiotic mixture on the innate immunity and intestinal microbiome of healthy common honeybees in two hives of the same apiary. Hive A received a diet of 50% glucose syrup, while hive B received the same syrup supplemented with the probiotics, both administered daily for 1 month. To determine whether the probiotic altered the immune response, phenoloxidase activity and hemolymph cellular subtype count were investigated. Additionally, metagenomic approaches were used to analyze the effects on gut microbiota composition and function, considering the critical role the gut microbiota plays in modulating host physiology.

Results: The results revealed differences in hemocyte populations between the two hives, as hive A exhibited higher counts of oenocytoids and granulocytes. These findings indicated that the dietary supplementation with the probiotic mixture was safe and well-tolerated. Furthermore, phenoloxidase activity significantly decreased in hive B (1.75 ± 0.19 U/mg) compared to hive A (3.62 ± 0.44 U/mg, p < 0.005), suggesting an improved state of well-being in the honeybees, as they did not require activation of immune defense mechanisms. Regarding the microbiome composition, the probiotic modulated the gut microbiota in hive B compared to the control, retaining core microbiota components while causing both positive and negative variations. Notably, several genes, particularly KEGG genes involved in amino acid metabolism, carbohydrate metabolism, and branched-chain amino acid (BCAA) transport, were more abundant in the probiotic-fed group, suggesting an effective nutritional supplement for the host.

Conclusions: This study advocated that feeding with this probiotic mixture induces beneficial immunological effects and promoted a balanced gut microbiota with enhanced metabolic activities related to digestion. The use of highly selected probiotics was shown to contribute to the overall well-being of the honeybees, improving their immune response and gut health.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biological Research
Biological Research 生物-生物学
CiteScore
10.10
自引率
0.00%
发文量
33
审稿时长
>12 weeks
期刊介绍: Biological Research is an open access, peer-reviewed journal that encompasses diverse fields of experimental biology, such as biochemistry, bioinformatics, biotechnology, cell biology, cancer, chemical biology, developmental biology, evolutionary biology, genetics, genomics, immunology, marine biology, microbiology, molecular biology, neuroscience, plant biology, physiology, stem cell research, structural biology and systems biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信