Shan Ren, Xi Cao, Qikui Fan, Zhimao Yang, Fei Wang, Xin Wang, Licheng Bai, Jian Yang
{"title":"通过局部微环境调控,在有机功能化 CuO 纳米粒子上选择性地将二氧化碳电还原成多碳产品。","authors":"Shan Ren, Xi Cao, Qikui Fan, Zhimao Yang, Fei Wang, Xin Wang, Licheng Bai, Jian Yang","doi":"10.1007/s40820-024-01480-8","DOIUrl":null,"url":null,"abstract":"<div><h2>Highlights</h2><div>\n \n <ul>\n <li>\n <p>Developing surface-functionalized catalysts with exceptional activity and selectivity for the electrocatalytic CO<sub>2</sub>RR to C<sub>2+</sub> products under neutral electrolyte.</p>\n </li>\n <li>\n <p>A remarkable C<sub>2+</sub> FE of nearly 90% at an unprecedented current density of 300 mA cm<sup>−2</sup> and maintain high FE (> 80%) at the wide current density performance (100–600 mA cm<sup>−2</sup>) in neutral environments using a flow cell as well as MEA electrolyzer.</p>\n </li>\n <li>\n <p>Mechanical study reveals that reducing the coverage of coordinated K·H<sub>2</sub>O water increased the probability of intermediate reactants (CO) interacting with the surface, thereby promoting efficient C–C coupling and enhancing the yield of C<sub>2+</sub> products.</p>\n </li>\n </ul>\n </div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"16 1","pages":""},"PeriodicalIF":26.6000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11310183/pdf/","citationCount":"0","resultStr":"{\"title\":\"Selective CO2 Electroreduction to Multi-Carbon Products on Organic-Functionalized CuO Nanoparticles by Local Micro-Environment Modulation\",\"authors\":\"Shan Ren, Xi Cao, Qikui Fan, Zhimao Yang, Fei Wang, Xin Wang, Licheng Bai, Jian Yang\",\"doi\":\"10.1007/s40820-024-01480-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h2>Highlights</h2><div>\\n \\n <ul>\\n <li>\\n <p>Developing surface-functionalized catalysts with exceptional activity and selectivity for the electrocatalytic CO<sub>2</sub>RR to C<sub>2+</sub> products under neutral electrolyte.</p>\\n </li>\\n <li>\\n <p>A remarkable C<sub>2+</sub> FE of nearly 90% at an unprecedented current density of 300 mA cm<sup>−2</sup> and maintain high FE (> 80%) at the wide current density performance (100–600 mA cm<sup>−2</sup>) in neutral environments using a flow cell as well as MEA electrolyzer.</p>\\n </li>\\n <li>\\n <p>Mechanical study reveals that reducing the coverage of coordinated K·H<sub>2</sub>O water increased the probability of intermediate reactants (CO) interacting with the surface, thereby promoting efficient C–C coupling and enhancing the yield of C<sub>2+</sub> products.</p>\\n </li>\\n </ul>\\n </div></div>\",\"PeriodicalId\":714,\"journal\":{\"name\":\"Nano-Micro Letters\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":26.6000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11310183/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano-Micro Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40820-024-01480-8\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40820-024-01480-8","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
摘要
铜基催化剂的表面功能化主要通过抑制寄生氢演化反应和促进电极上 CO2/CO 的局部浓缩,在增强电化学 CO2 还原反应 (CO2RR) 以生成多碳 (C2+) 产物方面具有广阔的潜力。基于这种方法,我们开发出了表面功能化催化剂,具有优异的活性和选择性,可在中性电解质中电催化 CO2RR 到 C2+。利用涂有六乙炔苯有机分子的 CuO 纳米粒子(HEB-CuO NPs),在 300 mA cm-2 的空前电流密度下,C2+ 法拉第效率达到了近 90% 的显著水平,而且在中性环境下使用流动池,在宽电流密度范围(100-600 mA cm-2)内都能保持较高的 FE(> 80%)。此外,在膜电极组件(MEA)电解槽中,部分电流密度为 387.6 mA cm-2 时,FEC2+ 的浓度达到了 86.14%,同时在电流密度为 200 mA cm-2 时,该电解槽可连续运行 50 小时以上。原位光谱研究和分子动力学模拟显示,降低配位 K⋅H2O 水的覆盖率可增加中间反应物(CO)与表面相互作用的概率,从而促进高效的 C-C 偶联并提高 C2+ 产物的产量。这一进展为优化局部微环境以实现可持续和高效的 C2+ 生产提供了巨大的潜力。
Selective CO2 Electroreduction to Multi-Carbon Products on Organic-Functionalized CuO Nanoparticles by Local Micro-Environment Modulation
Highlights
Developing surface-functionalized catalysts with exceptional activity and selectivity for the electrocatalytic CO2RR to C2+ products under neutral electrolyte.
A remarkable C2+ FE of nearly 90% at an unprecedented current density of 300 mA cm−2 and maintain high FE (> 80%) at the wide current density performance (100–600 mA cm−2) in neutral environments using a flow cell as well as MEA electrolyzer.
Mechanical study reveals that reducing the coverage of coordinated K·H2O water increased the probability of intermediate reactants (CO) interacting with the surface, thereby promoting efficient C–C coupling and enhancing the yield of C2+ products.
期刊介绍:
Nano-Micro Letters is a peer-reviewed, international, interdisciplinary, and open-access journal published under the SpringerOpen brand.
Nano-Micro Letters focuses on the science, experiments, engineering, technologies, and applications of nano- or microscale structures and systems in various fields such as physics, chemistry, biology, material science, and pharmacy.It also explores the expanding interfaces between these fields.
Nano-Micro Letters particularly emphasizes the bottom-up approach in the length scale from nano to micro. This approach is crucial for achieving industrial applications in nanotechnology, as it involves the assembly, modification, and control of nanostructures on a microscale.