Yi Jiang, Xiaochen Liu, Yan Shang, Jitao Li, Baoquan Gao, Yichao Ren, Xianliang Meng
{"title":"通过生理学和转录组分析了解三疣梭子蟹的亚硝酸盐应激反应","authors":"Yi Jiang, Xiaochen Liu, Yan Shang, Jitao Li, Baoquan Gao, Yichao Ren, Xianliang Meng","doi":"10.1007/s10126-024-10353-5","DOIUrl":null,"url":null,"abstract":"<div><p>Nitrite is a common environmental pollutant in intensive aquaculture systems. In this study, physiological and transcriptomic analyses were performed to investigate nitrite stress responses in the swimming crab <i>Portunus trituberculatus</i>, an important aquaculture species in China. The results revealed that nitrite can affect neurotransmitter signaling via the expression of neurotransmitter receptors such as <i>octopamine receptor</i> (<i>OAR</i>) and <i>5-hydroxytryptamine receptor</i> (<i>5-HTR</i>), and depress ecdysteroid signaling by downregulating <i>ecdysteroid receptor</i> (<i>EcR</i>) as well as its downstream transcription factors in hepatopancreas. In addition, nitrite suppressed the expression of <i>hemocyanins</i>, the oxygen-transporting protein, which at least partly contributed to tissue hypoxia, resulting in a switchover of energy metabolism from aerobic to anaerobic pathway. To meet the energy demand, glycogens and lipids were mobilized and transported to the hemolymph, and the catabolism of amino acids and fatty acids was enhanced to provide energy for hepatopancreas. β-oxidation of fatty acids, the major process by which fatty acids are oxidized to generate energy, seems to occur mainly not in mitochondria but in peroxisomes. Although the cellular protective mechanisms, including antioxidant defense, heat shock response (HSR), unfolded protein response (UPR), and autophagy, were activated, nitrite-induced cellular stress overwhelmed the repairing capacity and caused significant increase in the levels of apoptosis. These results indicated that nitrite stress influences neurotransmitter and endocrine signaling, disturbs energy metabolism, damages cellular components, and induces apoptosis in <i>P. trituberculatus</i>. The findings of this study provide new insights into nitrite stress response in the swimming crab and provide valuable information for aquaculture management of this species.</p></div>","PeriodicalId":690,"journal":{"name":"Marine Biotechnology","volume":"26 5","pages":"1040 - 1052"},"PeriodicalIF":2.6000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physiological and Transcriptomic Analyses Provide Insights into Nitrite Stress Responses of the Swimming Crab Portunus trituberculatus\",\"authors\":\"Yi Jiang, Xiaochen Liu, Yan Shang, Jitao Li, Baoquan Gao, Yichao Ren, Xianliang Meng\",\"doi\":\"10.1007/s10126-024-10353-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Nitrite is a common environmental pollutant in intensive aquaculture systems. In this study, physiological and transcriptomic analyses were performed to investigate nitrite stress responses in the swimming crab <i>Portunus trituberculatus</i>, an important aquaculture species in China. The results revealed that nitrite can affect neurotransmitter signaling via the expression of neurotransmitter receptors such as <i>octopamine receptor</i> (<i>OAR</i>) and <i>5-hydroxytryptamine receptor</i> (<i>5-HTR</i>), and depress ecdysteroid signaling by downregulating <i>ecdysteroid receptor</i> (<i>EcR</i>) as well as its downstream transcription factors in hepatopancreas. In addition, nitrite suppressed the expression of <i>hemocyanins</i>, the oxygen-transporting protein, which at least partly contributed to tissue hypoxia, resulting in a switchover of energy metabolism from aerobic to anaerobic pathway. To meet the energy demand, glycogens and lipids were mobilized and transported to the hemolymph, and the catabolism of amino acids and fatty acids was enhanced to provide energy for hepatopancreas. β-oxidation of fatty acids, the major process by which fatty acids are oxidized to generate energy, seems to occur mainly not in mitochondria but in peroxisomes. Although the cellular protective mechanisms, including antioxidant defense, heat shock response (HSR), unfolded protein response (UPR), and autophagy, were activated, nitrite-induced cellular stress overwhelmed the repairing capacity and caused significant increase in the levels of apoptosis. These results indicated that nitrite stress influences neurotransmitter and endocrine signaling, disturbs energy metabolism, damages cellular components, and induces apoptosis in <i>P. trituberculatus</i>. The findings of this study provide new insights into nitrite stress response in the swimming crab and provide valuable information for aquaculture management of this species.</p></div>\",\"PeriodicalId\":690,\"journal\":{\"name\":\"Marine Biotechnology\",\"volume\":\"26 5\",\"pages\":\"1040 - 1052\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine Biotechnology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10126-024-10353-5\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Biotechnology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10126-024-10353-5","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Physiological and Transcriptomic Analyses Provide Insights into Nitrite Stress Responses of the Swimming Crab Portunus trituberculatus
Nitrite is a common environmental pollutant in intensive aquaculture systems. In this study, physiological and transcriptomic analyses were performed to investigate nitrite stress responses in the swimming crab Portunus trituberculatus, an important aquaculture species in China. The results revealed that nitrite can affect neurotransmitter signaling via the expression of neurotransmitter receptors such as octopamine receptor (OAR) and 5-hydroxytryptamine receptor (5-HTR), and depress ecdysteroid signaling by downregulating ecdysteroid receptor (EcR) as well as its downstream transcription factors in hepatopancreas. In addition, nitrite suppressed the expression of hemocyanins, the oxygen-transporting protein, which at least partly contributed to tissue hypoxia, resulting in a switchover of energy metabolism from aerobic to anaerobic pathway. To meet the energy demand, glycogens and lipids were mobilized and transported to the hemolymph, and the catabolism of amino acids and fatty acids was enhanced to provide energy for hepatopancreas. β-oxidation of fatty acids, the major process by which fatty acids are oxidized to generate energy, seems to occur mainly not in mitochondria but in peroxisomes. Although the cellular protective mechanisms, including antioxidant defense, heat shock response (HSR), unfolded protein response (UPR), and autophagy, were activated, nitrite-induced cellular stress overwhelmed the repairing capacity and caused significant increase in the levels of apoptosis. These results indicated that nitrite stress influences neurotransmitter and endocrine signaling, disturbs energy metabolism, damages cellular components, and induces apoptosis in P. trituberculatus. The findings of this study provide new insights into nitrite stress response in the swimming crab and provide valuable information for aquaculture management of this species.
期刊介绍:
Marine Biotechnology welcomes high-quality research papers presenting novel data on the biotechnology of aquatic organisms. The journal publishes high quality papers in the areas of molecular biology, genomics, proteomics, cell biology, and biochemistry, and particularly encourages submissions of papers related to genome biology such as linkage mapping, large-scale gene discoveries, QTL analysis, physical mapping, and comparative and functional genome analysis. Papers on technological development and marine natural products should demonstrate innovation and novel applications.