将人工智能纳入便携式红外热成像,用于非酒精性脂肪肝的诊断和分期。

Yana Davidov, Rafael Y Brzezinski, Monica-Inda Kaufmann, Mariya Likhter, Tammy Hod, Orit Pappo, Yair Zimmer, Zehava Ovadia-Blechman, Neta Rabin, Adi Barlev, Orli Berman, Ziv Ben Ari, Oshrit Hoffer
{"title":"将人工智能纳入便携式红外热成像,用于非酒精性脂肪肝的诊断和分期。","authors":"Yana Davidov, Rafael Y Brzezinski, Monica-Inda Kaufmann, Mariya Likhter, Tammy Hod, Orit Pappo, Yair Zimmer, Zehava Ovadia-Blechman, Neta Rabin, Adi Barlev, Orli Berman, Ziv Ben Ari, Oshrit Hoffer","doi":"10.1002/jbio.202400189","DOIUrl":null,"url":null,"abstract":"<p><p>Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) is one of the most prevalent chronic liver diseases worldwide. Thermal imaging combined with advanced image-processing and machine learning analysis accurately classified disease status in a study on mice; this study aimed to develop this tool for humans. This prospective study included 46 patients who underwent liver biopsy. Liver thermal imaging was performed on the same day as liver biopsy. We developed an image-processing algorithm that measured the relative spatial thermal variation across the skin covering the liver. The texture parameters obtained from the thermal images were input into the machine learning algorithm. Patients were diagnosed with MASLD and stratified according to nonalcoholic fatty liver disease activity score (NAS) and fibrosis stage using the METAVIR score. Twenty-one of 46 patients were diagnosed with MASLD. Using thermal imaging followed by processing, detection accuracy for patients with NAS >4 was 0.72.</p>","PeriodicalId":94068,"journal":{"name":"Journal of biophotonics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Incorporating artificial intelligence in portable infrared thermal imaging for the diagnosis and staging of nonalcoholic fatty liver disease.\",\"authors\":\"Yana Davidov, Rafael Y Brzezinski, Monica-Inda Kaufmann, Mariya Likhter, Tammy Hod, Orit Pappo, Yair Zimmer, Zehava Ovadia-Blechman, Neta Rabin, Adi Barlev, Orli Berman, Ziv Ben Ari, Oshrit Hoffer\",\"doi\":\"10.1002/jbio.202400189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) is one of the most prevalent chronic liver diseases worldwide. Thermal imaging combined with advanced image-processing and machine learning analysis accurately classified disease status in a study on mice; this study aimed to develop this tool for humans. This prospective study included 46 patients who underwent liver biopsy. Liver thermal imaging was performed on the same day as liver biopsy. We developed an image-processing algorithm that measured the relative spatial thermal variation across the skin covering the liver. The texture parameters obtained from the thermal images were input into the machine learning algorithm. Patients were diagnosed with MASLD and stratified according to nonalcoholic fatty liver disease activity score (NAS) and fibrosis stage using the METAVIR score. Twenty-one of 46 patients were diagnosed with MASLD. Using thermal imaging followed by processing, detection accuracy for patients with NAS >4 was 0.72.</p>\",\"PeriodicalId\":94068,\"journal\":{\"name\":\"Journal of biophotonics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biophotonics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/jbio.202400189\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biophotonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/jbio.202400189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

代谢功能障碍相关性脂肪肝(MASLD)是全球最普遍的慢性肝病之一。在一项针对小鼠的研究中,热成像与先进的图像处理和机器学习分析相结合,准确地对疾病状态进行了分类;本研究旨在为人类开发这一工具。这项前瞻性研究包括 46 名接受肝活检的患者。肝脏热成像与肝活检在同一天进行。我们开发了一种图像处理算法,用于测量覆盖肝脏皮肤的相对空间热变化。从热图像中获得的纹理参数被输入到机器学习算法中。患者被诊断为MASLD,并根据非酒精性脂肪肝活动评分(NAS)和纤维化分期使用METAVIR评分进行分层。46 名患者中有 21 人被确诊为 MASLD。使用热成像后进行处理,NAS>4患者的检测准确率为0.72。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Incorporating artificial intelligence in portable infrared thermal imaging for the diagnosis and staging of nonalcoholic fatty liver disease.

Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) is one of the most prevalent chronic liver diseases worldwide. Thermal imaging combined with advanced image-processing and machine learning analysis accurately classified disease status in a study on mice; this study aimed to develop this tool for humans. This prospective study included 46 patients who underwent liver biopsy. Liver thermal imaging was performed on the same day as liver biopsy. We developed an image-processing algorithm that measured the relative spatial thermal variation across the skin covering the liver. The texture parameters obtained from the thermal images were input into the machine learning algorithm. Patients were diagnosed with MASLD and stratified according to nonalcoholic fatty liver disease activity score (NAS) and fibrosis stage using the METAVIR score. Twenty-one of 46 patients were diagnosed with MASLD. Using thermal imaging followed by processing, detection accuracy for patients with NAS >4 was 0.72.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信