{"title":"基于导向矢量场和自构造学习网络的编队控制,用于在静态障碍物环境中对性能灵活的欠驱动水面舰艇进行控制。","authors":"Xiuying Huang , Haitao Liu , Xuehong Tian , Jianbin Yuan","doi":"10.1016/j.isatra.2024.07.029","DOIUrl":null,"url":null,"abstract":"<div><p>To address the problem of underactuated surface vessel (USV) formation control in static obstacle environments with model uncertainties and time-varying external disturbances, a model-free formation control strategy is proposed in this paper. First, based on the guiding vector field (GVF), a composite GVF is developed to guide USV formation to the desired position and to avoid multiple static obstacles. Second, a flexible constraint strategy is introduced, and the constraint boundary conditions are appropriately relaxed to avoid singularities in the obstacle environment. Then, based on the Mexican hat wavelet function, the self-structuring fuzzy Mexican hat wavelet cerebellar model articulation controller (SCMAC), and a self-structuring fuzzy Mexican hat wavelet brain emotional learning controller (SBELC), are proposed to achieve model-free control. In addition, the self-structuring algorithm is embedded into SCMAC and SBELC to achieve autonomous optimization of the controller structure and to reduce the computational effort of the control system. The salient features in the proposed control strategy are as follows. First, the proposed model-free formation control strategy does not have to rely on accurate model information. Second, collisions are effectively avoided, and good control performance is guaranteed even under the influence of disturbances and static obstacles. Third, the proposed self-structuring algorithm achieves automatic construction of the controller structure. Finally, the signals in the control system are proven to be bounded, and the simulation results verify the feasibility and superiority of the proposed model-free control strategy.</p></div>","PeriodicalId":14660,"journal":{"name":"ISA transactions","volume":"153 ","pages":"Pages 96-116"},"PeriodicalIF":6.3000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0019057824003616/pdfft?md5=e8c7bff5df5cae4b08e69122aa014d3a&pid=1-s2.0-S0019057824003616-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Guiding vector field and self-structuring learning network-based formation control of underactuated surface vessels in static obstacle environments with flexible performances\",\"authors\":\"Xiuying Huang , Haitao Liu , Xuehong Tian , Jianbin Yuan\",\"doi\":\"10.1016/j.isatra.2024.07.029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To address the problem of underactuated surface vessel (USV) formation control in static obstacle environments with model uncertainties and time-varying external disturbances, a model-free formation control strategy is proposed in this paper. First, based on the guiding vector field (GVF), a composite GVF is developed to guide USV formation to the desired position and to avoid multiple static obstacles. Second, a flexible constraint strategy is introduced, and the constraint boundary conditions are appropriately relaxed to avoid singularities in the obstacle environment. Then, based on the Mexican hat wavelet function, the self-structuring fuzzy Mexican hat wavelet cerebellar model articulation controller (SCMAC), and a self-structuring fuzzy Mexican hat wavelet brain emotional learning controller (SBELC), are proposed to achieve model-free control. In addition, the self-structuring algorithm is embedded into SCMAC and SBELC to achieve autonomous optimization of the controller structure and to reduce the computational effort of the control system. The salient features in the proposed control strategy are as follows. First, the proposed model-free formation control strategy does not have to rely on accurate model information. Second, collisions are effectively avoided, and good control performance is guaranteed even under the influence of disturbances and static obstacles. Third, the proposed self-structuring algorithm achieves automatic construction of the controller structure. Finally, the signals in the control system are proven to be bounded, and the simulation results verify the feasibility and superiority of the proposed model-free control strategy.</p></div>\",\"PeriodicalId\":14660,\"journal\":{\"name\":\"ISA transactions\",\"volume\":\"153 \",\"pages\":\"Pages 96-116\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0019057824003616/pdfft?md5=e8c7bff5df5cae4b08e69122aa014d3a&pid=1-s2.0-S0019057824003616-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISA transactions\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019057824003616\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019057824003616","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Guiding vector field and self-structuring learning network-based formation control of underactuated surface vessels in static obstacle environments with flexible performances
To address the problem of underactuated surface vessel (USV) formation control in static obstacle environments with model uncertainties and time-varying external disturbances, a model-free formation control strategy is proposed in this paper. First, based on the guiding vector field (GVF), a composite GVF is developed to guide USV formation to the desired position and to avoid multiple static obstacles. Second, a flexible constraint strategy is introduced, and the constraint boundary conditions are appropriately relaxed to avoid singularities in the obstacle environment. Then, based on the Mexican hat wavelet function, the self-structuring fuzzy Mexican hat wavelet cerebellar model articulation controller (SCMAC), and a self-structuring fuzzy Mexican hat wavelet brain emotional learning controller (SBELC), are proposed to achieve model-free control. In addition, the self-structuring algorithm is embedded into SCMAC and SBELC to achieve autonomous optimization of the controller structure and to reduce the computational effort of the control system. The salient features in the proposed control strategy are as follows. First, the proposed model-free formation control strategy does not have to rely on accurate model information. Second, collisions are effectively avoided, and good control performance is guaranteed even under the influence of disturbances and static obstacles. Third, the proposed self-structuring algorithm achieves automatic construction of the controller structure. Finally, the signals in the control system are proven to be bounded, and the simulation results verify the feasibility and superiority of the proposed model-free control strategy.
期刊介绍:
ISA Transactions serves as a platform for showcasing advancements in measurement and automation, catering to both industrial practitioners and applied researchers. It covers a wide array of topics within measurement, including sensors, signal processing, data analysis, and fault detection, supported by techniques such as artificial intelligence and communication systems. Automation topics encompass control strategies, modelling, system reliability, and maintenance, alongside optimization and human-machine interaction. The journal targets research and development professionals in control systems, process instrumentation, and automation from academia and industry.