Moussa Labbadi , Thierry-Marie Guerra , Mohamed Djemai
{"title":"将分数有限时间控制用于受霍德尔干扰的非线性系统的鲁棒跟踪,并应用于无人飞行器。","authors":"Moussa Labbadi , Thierry-Marie Guerra , Mohamed Djemai","doi":"10.1016/j.isatra.2024.07.033","DOIUrl":null,"url":null,"abstract":"<div><p>The aim of the present article is to design a robust fractional-order (FO) finite-time (FnT) control able to tackle Hölder disturbances of second-order nonlinear systems. First, a novel sliding manifold with Arc-Tangent function is suggested for second nonlinear systems. It has been proven that the system states globally converge to the origin in FnT using the proposed sliding mode variable. To ensure a FnT stability of the sliding variable, a robust control is developed. By using fractional operators, a uniformly continuous control law is designed to tackle Hölder disturbances. Furthermore, the suggested approach is shown to be resistant to matched Hölder disturbances and uncertainties that are continuous but not necessarily differentiable. Moreover, the FnT stability of quadrotors using the proposed control, that is our second result. The quadrotor simulations analysis demonstrates the practicality of the proposed FnT controller in the presence of Hölder disturbances.</p></div>","PeriodicalId":14660,"journal":{"name":"ISA transactions","volume":"153 ","pages":"Pages 209-222"},"PeriodicalIF":6.3000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0019057824003665/pdfft?md5=479a422d37b2f8017a4b7ae94e3b1069&pid=1-s2.0-S0019057824003665-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Fractional finite-time control for robust tracking of nonlinear systems subject to Hölder disturbances with application to UAVs\",\"authors\":\"Moussa Labbadi , Thierry-Marie Guerra , Mohamed Djemai\",\"doi\":\"10.1016/j.isatra.2024.07.033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The aim of the present article is to design a robust fractional-order (FO) finite-time (FnT) control able to tackle Hölder disturbances of second-order nonlinear systems. First, a novel sliding manifold with Arc-Tangent function is suggested for second nonlinear systems. It has been proven that the system states globally converge to the origin in FnT using the proposed sliding mode variable. To ensure a FnT stability of the sliding variable, a robust control is developed. By using fractional operators, a uniformly continuous control law is designed to tackle Hölder disturbances. Furthermore, the suggested approach is shown to be resistant to matched Hölder disturbances and uncertainties that are continuous but not necessarily differentiable. Moreover, the FnT stability of quadrotors using the proposed control, that is our second result. The quadrotor simulations analysis demonstrates the practicality of the proposed FnT controller in the presence of Hölder disturbances.</p></div>\",\"PeriodicalId\":14660,\"journal\":{\"name\":\"ISA transactions\",\"volume\":\"153 \",\"pages\":\"Pages 209-222\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0019057824003665/pdfft?md5=479a422d37b2f8017a4b7ae94e3b1069&pid=1-s2.0-S0019057824003665-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISA transactions\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019057824003665\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019057824003665","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Fractional finite-time control for robust tracking of nonlinear systems subject to Hölder disturbances with application to UAVs
The aim of the present article is to design a robust fractional-order (FO) finite-time (FnT) control able to tackle Hölder disturbances of second-order nonlinear systems. First, a novel sliding manifold with Arc-Tangent function is suggested for second nonlinear systems. It has been proven that the system states globally converge to the origin in FnT using the proposed sliding mode variable. To ensure a FnT stability of the sliding variable, a robust control is developed. By using fractional operators, a uniformly continuous control law is designed to tackle Hölder disturbances. Furthermore, the suggested approach is shown to be resistant to matched Hölder disturbances and uncertainties that are continuous but not necessarily differentiable. Moreover, the FnT stability of quadrotors using the proposed control, that is our second result. The quadrotor simulations analysis demonstrates the practicality of the proposed FnT controller in the presence of Hölder disturbances.
期刊介绍:
ISA Transactions serves as a platform for showcasing advancements in measurement and automation, catering to both industrial practitioners and applied researchers. It covers a wide array of topics within measurement, including sensors, signal processing, data analysis, and fault detection, supported by techniques such as artificial intelligence and communication systems. Automation topics encompass control strategies, modelling, system reliability, and maintenance, alongside optimization and human-machine interaction. The journal targets research and development professionals in control systems, process instrumentation, and automation from academia and industry.