单核丝状真菌 Ustilago sp. HFJ311 通过增强铁的运输和辅助素的生物合成,促进植物生长并减少镉的积累。

Journal of hazardous materials Pub Date : 2024-09-15 Epub Date: 2024-08-03 DOI:10.1016/j.jhazmat.2024.135423
Shengwang Wang, Xiaofan Na, Meiyun Pu, Yanfang Song, Junjie Li, Kaile Li, Zhenyu Cheng, Xiaoqi He, Chuanji Zhang, Cuifang Liang, Xiaomin Wang, Yurong Bi
{"title":"单核丝状真菌 Ustilago sp. HFJ311 通过增强铁的运输和辅助素的生物合成,促进植物生长并减少镉的积累。","authors":"Shengwang Wang, Xiaofan Na, Meiyun Pu, Yanfang Song, Junjie Li, Kaile Li, Zhenyu Cheng, Xiaoqi He, Chuanji Zhang, Cuifang Liang, Xiaomin Wang, Yurong Bi","doi":"10.1016/j.jhazmat.2024.135423","DOIUrl":null,"url":null,"abstract":"<p><p>Infection with smut fungus like Ustilago maydis decreases crop yield via inducing gall formation. However, the in vitro impact of Ustilago spp. on plant growth and stress tolerance remains elusive. This study investigated the plant growth promotion and cadmium stress mitigation mechanisms of a filamentous fungus discovered on a cultural medium containing 25 μM CdCl<sub>2</sub>. ITS sequence alignment revealed 98.7 % similarity with Ustilago bromivora, naming the strain Ustilago sp. HFJ311 (HFJ311). Co-cultivation with HFJ311 significantly enhanced the growth of various plants, including Arabidopsis, tobacco, cabbage, carrot, rice, and maize, and improved Arabidopsis tolerance to abiotic stresses like salt and metal ions. HFJ311 increased chlorophyll and Fe contents in Arabidopsis shoots and enhanced root-to-shoot Fe translocation while decreasing root Fe concentration by approximately 70 %. Concurrently, HFJ311 reduced Cd accumulation in Arabidopsis by about 60 %, indicating its potential for bioremediation in Cd-contaminated soils. Additionally, HFJ311 stimulated IAA concentration by upregulating auxin biosynthesis genes. Overexpression of the Fe transporter IRT1 negated HFJ311's growth-promotion effects under Cd stress. These results suggest that HFJ311 stimulates plant growth and inhibits Cd uptake by enhancing Fe translocation and auxin biosynthesis while disrupting Fe absorption. Our findings offer a promising bioremediation strategy for sustainable agriculture and food security.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The monokaryotic filamentous fungus Ustilago sp. HFJ311 promotes plant growth and reduces Cd accumulation by enhancing Fe transportation and auxin biosynthesis.\",\"authors\":\"Shengwang Wang, Xiaofan Na, Meiyun Pu, Yanfang Song, Junjie Li, Kaile Li, Zhenyu Cheng, Xiaoqi He, Chuanji Zhang, Cuifang Liang, Xiaomin Wang, Yurong Bi\",\"doi\":\"10.1016/j.jhazmat.2024.135423\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Infection with smut fungus like Ustilago maydis decreases crop yield via inducing gall formation. However, the in vitro impact of Ustilago spp. on plant growth and stress tolerance remains elusive. This study investigated the plant growth promotion and cadmium stress mitigation mechanisms of a filamentous fungus discovered on a cultural medium containing 25 μM CdCl<sub>2</sub>. ITS sequence alignment revealed 98.7 % similarity with Ustilago bromivora, naming the strain Ustilago sp. HFJ311 (HFJ311). Co-cultivation with HFJ311 significantly enhanced the growth of various plants, including Arabidopsis, tobacco, cabbage, carrot, rice, and maize, and improved Arabidopsis tolerance to abiotic stresses like salt and metal ions. HFJ311 increased chlorophyll and Fe contents in Arabidopsis shoots and enhanced root-to-shoot Fe translocation while decreasing root Fe concentration by approximately 70 %. Concurrently, HFJ311 reduced Cd accumulation in Arabidopsis by about 60 %, indicating its potential for bioremediation in Cd-contaminated soils. Additionally, HFJ311 stimulated IAA concentration by upregulating auxin biosynthesis genes. Overexpression of the Fe transporter IRT1 negated HFJ311's growth-promotion effects under Cd stress. These results suggest that HFJ311 stimulates plant growth and inhibits Cd uptake by enhancing Fe translocation and auxin biosynthesis while disrupting Fe absorption. Our findings offer a promising bioremediation strategy for sustainable agriculture and food security.</p>\",\"PeriodicalId\":94082,\"journal\":{\"name\":\"Journal of hazardous materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of hazardous materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jhazmat.2024.135423\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of hazardous materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2024.135423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/3 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

烟霉菌(如 Ustilago maydis)会诱导虫瘿形成,从而降低作物产量。然而,Ustilago 真菌对植物生长和抗逆性的体外影响仍然难以捉摸。本研究调查了在含有 25 μM CdCl2 的培养基上发现的一种丝状真菌的植物生长促进和镉胁迫缓解机制。ITS 序列比对发现该菌株与 Ustilago bromivora 的相似度为 98.7%,并将其命名为 Ustilago sp.与 HFJ311 共培养可显著促进拟南芥、烟草、卷心菜、胡萝卜、水稻和玉米等多种植物的生长,并提高拟南芥对盐和金属离子等非生物胁迫的耐受性。HFJ311 增加了拟南芥嫩芽中的叶绿素和铁含量,增强了根到根的铁转运,同时使根部的铁浓度降低了约 70%。同时,HFJ311 使拟南芥体内的镉积累减少了约 60%,这表明它具有在镉污染土壤中进行生物修复的潜力。此外,HFJ311 还通过上调辅助素生物合成基因来刺激 IAA 浓度。铁转运体 IRT1 的过表达否定了 HFJ311 在镉胁迫下促进生长的作用。这些结果表明,HFJ311 通过增强铁的转运和辅助素的生物合成,同时干扰铁的吸收,从而刺激植物生长并抑制镉的吸收。我们的研究结果为可持续农业和粮食安全提供了一种前景广阔的生物修复策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The monokaryotic filamentous fungus Ustilago sp. HFJ311 promotes plant growth and reduces Cd accumulation by enhancing Fe transportation and auxin biosynthesis.

Infection with smut fungus like Ustilago maydis decreases crop yield via inducing gall formation. However, the in vitro impact of Ustilago spp. on plant growth and stress tolerance remains elusive. This study investigated the plant growth promotion and cadmium stress mitigation mechanisms of a filamentous fungus discovered on a cultural medium containing 25 μM CdCl2. ITS sequence alignment revealed 98.7 % similarity with Ustilago bromivora, naming the strain Ustilago sp. HFJ311 (HFJ311). Co-cultivation with HFJ311 significantly enhanced the growth of various plants, including Arabidopsis, tobacco, cabbage, carrot, rice, and maize, and improved Arabidopsis tolerance to abiotic stresses like salt and metal ions. HFJ311 increased chlorophyll and Fe contents in Arabidopsis shoots and enhanced root-to-shoot Fe translocation while decreasing root Fe concentration by approximately 70 %. Concurrently, HFJ311 reduced Cd accumulation in Arabidopsis by about 60 %, indicating its potential for bioremediation in Cd-contaminated soils. Additionally, HFJ311 stimulated IAA concentration by upregulating auxin biosynthesis genes. Overexpression of the Fe transporter IRT1 negated HFJ311's growth-promotion effects under Cd stress. These results suggest that HFJ311 stimulates plant growth and inhibits Cd uptake by enhancing Fe translocation and auxin biosynthesis while disrupting Fe absorption. Our findings offer a promising bioremediation strategy for sustainable agriculture and food security.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信