基于深度学习的 SH3 信号结构域合成同源物设计。

Cell systems Pub Date : 2024-08-21 Epub Date: 2024-08-05 DOI:10.1016/j.cels.2024.07.005
Xinran Lian, Nikša Praljak, Subu K Subramanian, Sarah Wasinger, Rama Ranganathan, Andrew L Ferguson
{"title":"基于深度学习的 SH3 信号结构域合成同源物设计。","authors":"Xinran Lian, Nikša Praljak, Subu K Subramanian, Sarah Wasinger, Rama Ranganathan, Andrew L Ferguson","doi":"10.1016/j.cels.2024.07.005","DOIUrl":null,"url":null,"abstract":"<p><p>Evolution-based deep generative models represent an exciting direction in understanding and designing proteins. An open question is whether such models can learn specialized functional constraints that control fitness in specific biological contexts. Here, we examine the ability of generative models to produce synthetic versions of Src-homology 3 (SH3) domains that mediate signaling in the Sho1 osmotic stress response pathway of yeast. We show that a variational autoencoder (VAE) model produces artificial sequences that experimentally recapitulate the function of natural SH3 domains. More generally, the model organizes all fungal SH3 domains such that locality in the model latent space (but not simply locality in sequence space) enriches the design of synthetic orthologs and exposes non-obvious amino acid constraints distributed near and far from the SH3 ligand-binding site. The ability of generative models to design ortholog-like functions in vivo opens new avenues for engineering protein function in specific cellular contexts and environments.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":" ","pages":"725-737.e7"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep-learning-based design of synthetic orthologs of SH3 signaling domains.\",\"authors\":\"Xinran Lian, Nikša Praljak, Subu K Subramanian, Sarah Wasinger, Rama Ranganathan, Andrew L Ferguson\",\"doi\":\"10.1016/j.cels.2024.07.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Evolution-based deep generative models represent an exciting direction in understanding and designing proteins. An open question is whether such models can learn specialized functional constraints that control fitness in specific biological contexts. Here, we examine the ability of generative models to produce synthetic versions of Src-homology 3 (SH3) domains that mediate signaling in the Sho1 osmotic stress response pathway of yeast. We show that a variational autoencoder (VAE) model produces artificial sequences that experimentally recapitulate the function of natural SH3 domains. More generally, the model organizes all fungal SH3 domains such that locality in the model latent space (but not simply locality in sequence space) enriches the design of synthetic orthologs and exposes non-obvious amino acid constraints distributed near and far from the SH3 ligand-binding site. The ability of generative models to design ortholog-like functions in vivo opens new avenues for engineering protein function in specific cellular contexts and environments.</p>\",\"PeriodicalId\":93929,\"journal\":{\"name\":\"Cell systems\",\"volume\":\" \",\"pages\":\"725-737.e7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cels.2024.07.005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cels.2024.07.005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/5 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于进化的深度生成模型是理解和设计蛋白质的一个令人兴奋的方向。一个悬而未决的问题是,这类模型能否学习到在特定生物环境中控制适应性的专门功能约束。在这里,我们研究了生成模型生成Src-homology 3(SH3)结构域合成版本的能力,SH3结构域在酵母的Sho1渗透应激反应途径中介导信号传导。我们的研究表明,变异自动编码器(VAE)模型产生的人工序列在实验上再现了天然 SH3 结构域的功能。更广泛地说,该模型对所有真菌 SH3 结构域进行了组织,从而使模型潜在空间中的定位性(而不仅仅是序列空间中的定位性)丰富了合成直向同源物的设计,并暴露了分布在 SH3 配体结合位点附近和远处的非显而易见的氨基酸限制。生成模型设计体内同源物功能的能力为在特定细胞环境中设计蛋白质功能开辟了新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep-learning-based design of synthetic orthologs of SH3 signaling domains.

Evolution-based deep generative models represent an exciting direction in understanding and designing proteins. An open question is whether such models can learn specialized functional constraints that control fitness in specific biological contexts. Here, we examine the ability of generative models to produce synthetic versions of Src-homology 3 (SH3) domains that mediate signaling in the Sho1 osmotic stress response pathway of yeast. We show that a variational autoencoder (VAE) model produces artificial sequences that experimentally recapitulate the function of natural SH3 domains. More generally, the model organizes all fungal SH3 domains such that locality in the model latent space (but not simply locality in sequence space) enriches the design of synthetic orthologs and exposes non-obvious amino acid constraints distributed near and far from the SH3 ligand-binding site. The ability of generative models to design ortholog-like functions in vivo opens new avenues for engineering protein function in specific cellular contexts and environments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信