Jayson W Jay, Alen Palackic, Anesh Prasai, Quincy Seigel, Raima Siddiqui, Isabelle Bergman, Steven E Wolf, Michael G Wilkerson, Amina El Ayadi
{"title":"光活化玫瑰红能减轻纤维化表型,改善全厚损伤的皮肤伤口愈合。","authors":"Jayson W Jay, Alen Palackic, Anesh Prasai, Quincy Seigel, Raima Siddiqui, Isabelle Bergman, Steven E Wolf, Michael G Wilkerson, Amina El Ayadi","doi":"10.1111/wrr.13202","DOIUrl":null,"url":null,"abstract":"<p><p>Healing of deep cutaneous wounds often results in detrimental sequelae, including painful and debilitating scars. Current therapies for full-thickness injuries that target specific phases of wound healing have moderate success; however, full resolution remains incomplete and negative consequences persist if skin homeostasis is not achieved. Photoactivated molecules can modulate cellular responses by generating reactive oxygen species and may provide a novel therapeutic option to improve wound healing. In the current study, we investigated the effects of Rose bengal (RB) dye in a preclinical model of full-thickness cutaneous injury. Monochromatic green light activates RB to generate ROS in the presence of oxygen, subsequently crosslinking collagen fibrils. In in vitro studies, we show that photoactivated RB is well tolerated by epidermal keratinocytes and dermal fibroblasts and can mitigate fibrotic signalling by downregulating collagen production. In a murine model of full-thickness injury, topically-applied and photoactivated RB closed wounds faster than control and vehicle treatments and showed significantly improved wound healing outcomes, including enhanced early granulation, better collagen organisation and increased vascularity in the presence of protracted tissue ROS. These data support an overall improved cutaneous wound healing profile after RB phototherapy and warrant further investigations into this versatile molecule.</p>","PeriodicalId":23864,"journal":{"name":"Wound Repair and Regeneration","volume":" ","pages":"758-769"},"PeriodicalIF":3.8000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photoactivated rose bengal mitigates a fibrotic phenotype and improves cutaneous wound healing in full-thickness injuries.\",\"authors\":\"Jayson W Jay, Alen Palackic, Anesh Prasai, Quincy Seigel, Raima Siddiqui, Isabelle Bergman, Steven E Wolf, Michael G Wilkerson, Amina El Ayadi\",\"doi\":\"10.1111/wrr.13202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Healing of deep cutaneous wounds often results in detrimental sequelae, including painful and debilitating scars. Current therapies for full-thickness injuries that target specific phases of wound healing have moderate success; however, full resolution remains incomplete and negative consequences persist if skin homeostasis is not achieved. Photoactivated molecules can modulate cellular responses by generating reactive oxygen species and may provide a novel therapeutic option to improve wound healing. In the current study, we investigated the effects of Rose bengal (RB) dye in a preclinical model of full-thickness cutaneous injury. Monochromatic green light activates RB to generate ROS in the presence of oxygen, subsequently crosslinking collagen fibrils. In in vitro studies, we show that photoactivated RB is well tolerated by epidermal keratinocytes and dermal fibroblasts and can mitigate fibrotic signalling by downregulating collagen production. In a murine model of full-thickness injury, topically-applied and photoactivated RB closed wounds faster than control and vehicle treatments and showed significantly improved wound healing outcomes, including enhanced early granulation, better collagen organisation and increased vascularity in the presence of protracted tissue ROS. These data support an overall improved cutaneous wound healing profile after RB phototherapy and warrant further investigations into this versatile molecule.</p>\",\"PeriodicalId\":23864,\"journal\":{\"name\":\"Wound Repair and Regeneration\",\"volume\":\" \",\"pages\":\"758-769\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wound Repair and Regeneration\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/wrr.13202\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wound Repair and Regeneration","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/wrr.13202","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Photoactivated rose bengal mitigates a fibrotic phenotype and improves cutaneous wound healing in full-thickness injuries.
Healing of deep cutaneous wounds often results in detrimental sequelae, including painful and debilitating scars. Current therapies for full-thickness injuries that target specific phases of wound healing have moderate success; however, full resolution remains incomplete and negative consequences persist if skin homeostasis is not achieved. Photoactivated molecules can modulate cellular responses by generating reactive oxygen species and may provide a novel therapeutic option to improve wound healing. In the current study, we investigated the effects of Rose bengal (RB) dye in a preclinical model of full-thickness cutaneous injury. Monochromatic green light activates RB to generate ROS in the presence of oxygen, subsequently crosslinking collagen fibrils. In in vitro studies, we show that photoactivated RB is well tolerated by epidermal keratinocytes and dermal fibroblasts and can mitigate fibrotic signalling by downregulating collagen production. In a murine model of full-thickness injury, topically-applied and photoactivated RB closed wounds faster than control and vehicle treatments and showed significantly improved wound healing outcomes, including enhanced early granulation, better collagen organisation and increased vascularity in the presence of protracted tissue ROS. These data support an overall improved cutaneous wound healing profile after RB phototherapy and warrant further investigations into this versatile molecule.
期刊介绍:
Wound Repair and Regeneration provides extensive international coverage of cellular and molecular biology, connective tissue, and biological mediator studies in the field of tissue repair and regeneration and serves a diverse audience of surgeons, plastic surgeons, dermatologists, biochemists, cell biologists, and others.
Wound Repair and Regeneration is the official journal of The Wound Healing Society, The European Tissue Repair Society, The Japanese Society for Wound Healing, and The Australian Wound Management Association.