Fangfang Bai, Xiaoran Yang, Xuerong Chen, Xiaofei Wang
{"title":"在长度偏差采样条件下,受限平均存活时间与受限时间的函数关系推断。","authors":"Fangfang Bai, Xiaoran Yang, Xuerong Chen, Xiaofei Wang","doi":"10.1177/09622802241267812","DOIUrl":null,"url":null,"abstract":"<p><p>The restricted mean survival time (RMST) is often of direct interest in clinical studies involving censored survival outcomes. It describes the area under the survival curve from time zero to a specified time point. When data are subject to length-biased sampling, as is frequently encountered in observational cohort studies, existing methods cannot estimate the RMST for various restriction times through a single model. In this article, we model the RMST as a continuous function of the restriction time under the setting of length-biased sampling. Two approaches based on estimating equations are proposed to estimate the time-varying effects of covariates. Finally, we establish the asymptotic properties for the proposed estimators. Simulation studies are performed to demonstrate the finite sample performance. Two real-data examples are analyzed by our procedures.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"1610-1623"},"PeriodicalIF":1.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inference for restricted mean survival time as a function of restriction time under length-biased sampling.\",\"authors\":\"Fangfang Bai, Xiaoran Yang, Xuerong Chen, Xiaofei Wang\",\"doi\":\"10.1177/09622802241267812\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The restricted mean survival time (RMST) is often of direct interest in clinical studies involving censored survival outcomes. It describes the area under the survival curve from time zero to a specified time point. When data are subject to length-biased sampling, as is frequently encountered in observational cohort studies, existing methods cannot estimate the RMST for various restriction times through a single model. In this article, we model the RMST as a continuous function of the restriction time under the setting of length-biased sampling. Two approaches based on estimating equations are proposed to estimate the time-varying effects of covariates. Finally, we establish the asymptotic properties for the proposed estimators. Simulation studies are performed to demonstrate the finite sample performance. Two real-data examples are analyzed by our procedures.</p>\",\"PeriodicalId\":22038,\"journal\":{\"name\":\"Statistical Methods in Medical Research\",\"volume\":\" \",\"pages\":\"1610-1623\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Methods in Medical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/09622802241267812\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methods in Medical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/09622802241267812","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/7 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
Inference for restricted mean survival time as a function of restriction time under length-biased sampling.
The restricted mean survival time (RMST) is often of direct interest in clinical studies involving censored survival outcomes. It describes the area under the survival curve from time zero to a specified time point. When data are subject to length-biased sampling, as is frequently encountered in observational cohort studies, existing methods cannot estimate the RMST for various restriction times through a single model. In this article, we model the RMST as a continuous function of the restriction time under the setting of length-biased sampling. Two approaches based on estimating equations are proposed to estimate the time-varying effects of covariates. Finally, we establish the asymptotic properties for the proposed estimators. Simulation studies are performed to demonstrate the finite sample performance. Two real-data examples are analyzed by our procedures.
期刊介绍:
Statistical Methods in Medical Research is a peer reviewed scholarly journal and is the leading vehicle for articles in all the main areas of medical statistics and an essential reference for all medical statisticians. This unique journal is devoted solely to statistics and medicine and aims to keep professionals abreast of the many powerful statistical techniques now available to the medical profession. This journal is a member of the Committee on Publication Ethics (COPE)