通过微生物调控,建立生物膜失调模型,以测试根龋干预措施。

IF 13.8 1区 生物学 Q1 MICROBIOLOGY
Naile Dame-Teixeira, Reem El-Gendy, Andressa Souza de Oliveira, Cleonice Andrade Holanda, Luiz Antonio Soares Romeiro, Thuy Do
{"title":"通过微生物调控,建立生物膜失调模型,以测试根龋干预措施。","authors":"Naile Dame-Teixeira, Reem El-Gendy, Andressa Souza de Oliveira, Cleonice Andrade Holanda, Luiz Antonio Soares Romeiro, Thuy Do","doi":"10.1186/s40168-024-01862-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>This study aimed to engineer and optimise a dysbiotic biofilm model to develop in vitro root caries for investigating microbial modulation strategies. The model involved growing complex biofilms from a saliva inoculum collected from four volunteers using two strategies. In the first strategy (\"pre-treatment strategy\"), bovine root slabs were used, and two natural compounds were incorporated at time 0 of the 10-day biofilm experiment, which included sucrose cycles mimicking the cariogenic environment. In the second strategy (\"post-treatment strategy\"), mature biofilms were grown in a modified Calgary biofilm device coated with collagen and hydroxyapatite for 7 days and then were exposed to the same natural compounds. The metatranscriptome of each biofilm was then determined and analysed. Collagenase activity was examined, and the biofilms and dentine were imaged using confocal and scanning electron microscopy (SEM). Mineral loss and lesion formation were confirmed through micro-computed tomography (μ-CT).</p><p><strong>Results: </strong>The pH confirmed the cariogenic condition. In the metatranscriptome, we achieved a biofilm compositional complexity, showing a great diversity of the metabolically active microbiome in both pre- and post-treatment strategies, including reads mapped to microorganisms other than bacteria, such as archaea and viruses. Carbohydrate esterases had increased expression in the post-treated biofilms and in samples without sugar cycles, while glucosyltransferases were highly expressed in the presence of sucrose cycles. Enrichment for functions related to nitrogen compound metabolism and organic cyclic component metabolism in groups without sucrose compared to the sucrose-treated group. Pre-treatment of the roots with cranberry reduced microbial viability and gelatinase (but not collagenase) activity (p < 0.05). SEM images showed the complexity of biofilms was maintained, with a thick extracellular polysaccharides layer.</p><p><strong>Conclusions: </strong>This root caries model was optimized to produce complex cariogenic biofilms and root caries-like lesions, and could be used to test microbial modulation in vitro. Pre-treatments before biofilm development and cariogenic challenges were more effective than post-treatments. The clinical significance lies in the potential to apply the findings to develop varnish products for post-professional tooth prophylaxis, aiming at implementing a strategy for dysbiosis reversal in translational research. Video Abstract.</p>","PeriodicalId":18447,"journal":{"name":"Microbiome","volume":"12 1","pages":"145"},"PeriodicalIF":13.8000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11302357/pdf/","citationCount":"0","resultStr":"{\"title\":\"Engineering a dysbiotic biofilm model for testing root caries interventions through microbial modulation.\",\"authors\":\"Naile Dame-Teixeira, Reem El-Gendy, Andressa Souza de Oliveira, Cleonice Andrade Holanda, Luiz Antonio Soares Romeiro, Thuy Do\",\"doi\":\"10.1186/s40168-024-01862-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>This study aimed to engineer and optimise a dysbiotic biofilm model to develop in vitro root caries for investigating microbial modulation strategies. The model involved growing complex biofilms from a saliva inoculum collected from four volunteers using two strategies. In the first strategy (\\\"pre-treatment strategy\\\"), bovine root slabs were used, and two natural compounds were incorporated at time 0 of the 10-day biofilm experiment, which included sucrose cycles mimicking the cariogenic environment. In the second strategy (\\\"post-treatment strategy\\\"), mature biofilms were grown in a modified Calgary biofilm device coated with collagen and hydroxyapatite for 7 days and then were exposed to the same natural compounds. The metatranscriptome of each biofilm was then determined and analysed. Collagenase activity was examined, and the biofilms and dentine were imaged using confocal and scanning electron microscopy (SEM). Mineral loss and lesion formation were confirmed through micro-computed tomography (μ-CT).</p><p><strong>Results: </strong>The pH confirmed the cariogenic condition. In the metatranscriptome, we achieved a biofilm compositional complexity, showing a great diversity of the metabolically active microbiome in both pre- and post-treatment strategies, including reads mapped to microorganisms other than bacteria, such as archaea and viruses. Carbohydrate esterases had increased expression in the post-treated biofilms and in samples without sugar cycles, while glucosyltransferases were highly expressed in the presence of sucrose cycles. Enrichment for functions related to nitrogen compound metabolism and organic cyclic component metabolism in groups without sucrose compared to the sucrose-treated group. Pre-treatment of the roots with cranberry reduced microbial viability and gelatinase (but not collagenase) activity (p < 0.05). SEM images showed the complexity of biofilms was maintained, with a thick extracellular polysaccharides layer.</p><p><strong>Conclusions: </strong>This root caries model was optimized to produce complex cariogenic biofilms and root caries-like lesions, and could be used to test microbial modulation in vitro. Pre-treatments before biofilm development and cariogenic challenges were more effective than post-treatments. The clinical significance lies in the potential to apply the findings to develop varnish products for post-professional tooth prophylaxis, aiming at implementing a strategy for dysbiosis reversal in translational research. Video Abstract.</p>\",\"PeriodicalId\":18447,\"journal\":{\"name\":\"Microbiome\",\"volume\":\"12 1\",\"pages\":\"145\"},\"PeriodicalIF\":13.8000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11302357/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbiome\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s40168-024-01862-5\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40168-024-01862-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:本研究旨在设计和优化一个菌群失调生物膜模型,以开发用于研究微生物调节策略的体外根龋。该模型采用两种策略,从四名志愿者的唾液接种体中培养复杂的生物膜。在第一种策略("前处理策略")中,使用了牛根板,并在为期 10 天的生物膜实验的第 0 阶段加入了两种天然化合物,其中包括模拟致龋环境的蔗糖循环。在第二种策略("后处理策略")中,成熟的生物膜在涂有胶原蛋白和羟基磷灰石的改良卡尔加里生物膜装置中生长 7 天,然后接触相同的天然化合物。然后测定和分析每个生物膜的元转录组。检测胶原酶活性,并使用共焦和扫描电子显微镜(SEM)对生物膜和牙本质进行成像。通过微型计算机断层扫描(μ-CT)确认了矿物质流失和病变的形成:结果:pH值证实了龋齿的形成。在元转录组中,我们发现了生物膜组成的复杂性,显示了在处理前后两种策略中代谢活跃的微生物组的巨大多样性,包括映射到细菌以外的微生物的读数,如古细菌和病毒。碳水化合物酯酶在后处理生物膜和无糖循环样本中的表达量增加,而葡萄糖基转移酶在有蔗糖循环的情况下表达量较高。与蔗糖处理组相比,无蔗糖组中与氮化合物代谢和有机循环成分代谢相关的功能得到了丰富。用蔓越莓对根部进行预处理可降低微生物活力和明胶酶(而非胶原酶)活性(p 结论):这种根龋模型经过优化,可产生复杂的致龋生物膜和根龋样病变,可用于体外微生物调节试验。在生物膜形成和致龋挑战之前进行预处理比事后处理更有效。其临床意义在于可将研究结果应用于开发用于职业后牙齿预防的清漆产品,从而在转化研究中实施菌群失调逆转策略。视频摘要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Engineering a dysbiotic biofilm model for testing root caries interventions through microbial modulation.

Background: This study aimed to engineer and optimise a dysbiotic biofilm model to develop in vitro root caries for investigating microbial modulation strategies. The model involved growing complex biofilms from a saliva inoculum collected from four volunteers using two strategies. In the first strategy ("pre-treatment strategy"), bovine root slabs were used, and two natural compounds were incorporated at time 0 of the 10-day biofilm experiment, which included sucrose cycles mimicking the cariogenic environment. In the second strategy ("post-treatment strategy"), mature biofilms were grown in a modified Calgary biofilm device coated with collagen and hydroxyapatite for 7 days and then were exposed to the same natural compounds. The metatranscriptome of each biofilm was then determined and analysed. Collagenase activity was examined, and the biofilms and dentine were imaged using confocal and scanning electron microscopy (SEM). Mineral loss and lesion formation were confirmed through micro-computed tomography (μ-CT).

Results: The pH confirmed the cariogenic condition. In the metatranscriptome, we achieved a biofilm compositional complexity, showing a great diversity of the metabolically active microbiome in both pre- and post-treatment strategies, including reads mapped to microorganisms other than bacteria, such as archaea and viruses. Carbohydrate esterases had increased expression in the post-treated biofilms and in samples without sugar cycles, while glucosyltransferases were highly expressed in the presence of sucrose cycles. Enrichment for functions related to nitrogen compound metabolism and organic cyclic component metabolism in groups without sucrose compared to the sucrose-treated group. Pre-treatment of the roots with cranberry reduced microbial viability and gelatinase (but not collagenase) activity (p < 0.05). SEM images showed the complexity of biofilms was maintained, with a thick extracellular polysaccharides layer.

Conclusions: This root caries model was optimized to produce complex cariogenic biofilms and root caries-like lesions, and could be used to test microbial modulation in vitro. Pre-treatments before biofilm development and cariogenic challenges were more effective than post-treatments. The clinical significance lies in the potential to apply the findings to develop varnish products for post-professional tooth prophylaxis, aiming at implementing a strategy for dysbiosis reversal in translational research. Video Abstract.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microbiome
Microbiome MICROBIOLOGY-
CiteScore
21.90
自引率
2.60%
发文量
198
审稿时长
4 weeks
期刊介绍: Microbiome is a journal that focuses on studies of microbiomes in humans, animals, plants, and the environment. It covers both natural and manipulated microbiomes, such as those in agriculture. The journal is interested in research that uses meta-omics approaches or novel bioinformatics tools and emphasizes the community/host interaction and structure-function relationship within the microbiome. Studies that go beyond descriptive omics surveys and include experimental or theoretical approaches will be considered for publication. The journal also encourages research that establishes cause and effect relationships and supports proposed microbiome functions. However, studies of individual microbial isolates/species without exploring their impact on the host or the complex microbiome structures and functions will not be considered for publication. Microbiome is indexed in BIOSIS, Current Contents, DOAJ, Embase, MEDLINE, PubMed, PubMed Central, and Science Citations Index Expanded.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信