利用Neobacillus niacini AUMC-B524的力量合成氧化银纳米粒子:优化、表征和生物活性探索。

IF 4.3 2区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Shimaa H El-Sapagh, Nessma A El-Zawawy, Mostafa E Elshobary, Mohammed Alquraishi, Hossain M Zabed, Hoda S Nouh
{"title":"利用Neobacillus niacini AUMC-B524的力量合成氧化银纳米粒子:优化、表征和生物活性探索。","authors":"Shimaa H El-Sapagh, Nessma A El-Zawawy, Mostafa E Elshobary, Mohammed Alquraishi, Hossain M Zabed, Hoda S Nouh","doi":"10.1186/s12934-024-02484-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Biotechnology provides a cost-effective way to produce nanomaterials such as silver oxide nanoparticles (Ag<sub>2</sub>ONPs), which have emerged as versatile entities with diverse applications. This study investigated the ability of endophytic bacteria to biosynthesize Ag<sub>2</sub>ONPs.</p><p><strong>Results: </strong>A novel endophytic bacterial strain, Neobacillus niacini AUMC-B524, was isolated from Lycium shawii Roem. & Schult leaves and used to synthesize Ag<sub>2</sub>ONPS extracellularly. Plackett-Burman design and response surface approach was carried out to optimize the biosynthesis of Ag<sub>2</sub>ONPs (Bio-Ag<sub>2</sub>ONPs). Comprehensive characterization techniques, including UV-vis spectral analysis, Fourier transform infrared spectroscopy, transmission electron microscopy, X-ray diffraction, dynamic light scattering analysis, Raman microscopy, and energy dispersive X-ray analysis, confirmed the precise composition of the Ag<sub>2</sub>ONPS. Bio-Ag<sub>2</sub>ONPs were effective against multidrug-resistant wound pathogens, with minimum inhibitory concentrations (1-25 µg mL<sup>-1</sup>). Notably, Bio-Ag<sub>2</sub>ONPs demonstrated no cytotoxic effects on human skin fibroblasts (HSF) in vitro, while effectively suppressing the proliferation of human epidermoid skin carcinoma (A-431) cells, inducing apoptosis and modulating the key apoptotic genes including Bcl-2 associated X protein (Bax), B-cell lymphoma 2 (Bcl-2), Caspase-3 (Cas-3), and guardian of the genome (P53).</p><p><strong>Conclusions: </strong>These findings highlight the therapeutic potential of Bio-Ag<sub>2</sub>ONPs synthesized by endophytic N. niacini AUMC-B524, underscoring their antibacterial efficacy, anticancer activity, and biocompatibility, paving the way for novel therapeutic strategies.</p>","PeriodicalId":18582,"journal":{"name":"Microbial Cell Factories","volume":"23 1","pages":"220"},"PeriodicalIF":4.3000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11304630/pdf/","citationCount":"0","resultStr":"{\"title\":\"Harnessing the power of Neobacillus niacini AUMC-B524 for silver oxide nanoparticle synthesis: optimization, characterization, and bioactivity exploration.\",\"authors\":\"Shimaa H El-Sapagh, Nessma A El-Zawawy, Mostafa E Elshobary, Mohammed Alquraishi, Hossain M Zabed, Hoda S Nouh\",\"doi\":\"10.1186/s12934-024-02484-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Biotechnology provides a cost-effective way to produce nanomaterials such as silver oxide nanoparticles (Ag<sub>2</sub>ONPs), which have emerged as versatile entities with diverse applications. This study investigated the ability of endophytic bacteria to biosynthesize Ag<sub>2</sub>ONPs.</p><p><strong>Results: </strong>A novel endophytic bacterial strain, Neobacillus niacini AUMC-B524, was isolated from Lycium shawii Roem. & Schult leaves and used to synthesize Ag<sub>2</sub>ONPS extracellularly. Plackett-Burman design and response surface approach was carried out to optimize the biosynthesis of Ag<sub>2</sub>ONPs (Bio-Ag<sub>2</sub>ONPs). Comprehensive characterization techniques, including UV-vis spectral analysis, Fourier transform infrared spectroscopy, transmission electron microscopy, X-ray diffraction, dynamic light scattering analysis, Raman microscopy, and energy dispersive X-ray analysis, confirmed the precise composition of the Ag<sub>2</sub>ONPS. Bio-Ag<sub>2</sub>ONPs were effective against multidrug-resistant wound pathogens, with minimum inhibitory concentrations (1-25 µg mL<sup>-1</sup>). Notably, Bio-Ag<sub>2</sub>ONPs demonstrated no cytotoxic effects on human skin fibroblasts (HSF) in vitro, while effectively suppressing the proliferation of human epidermoid skin carcinoma (A-431) cells, inducing apoptosis and modulating the key apoptotic genes including Bcl-2 associated X protein (Bax), B-cell lymphoma 2 (Bcl-2), Caspase-3 (Cas-3), and guardian of the genome (P53).</p><p><strong>Conclusions: </strong>These findings highlight the therapeutic potential of Bio-Ag<sub>2</sub>ONPs synthesized by endophytic N. niacini AUMC-B524, underscoring their antibacterial efficacy, anticancer activity, and biocompatibility, paving the way for novel therapeutic strategies.</p>\",\"PeriodicalId\":18582,\"journal\":{\"name\":\"Microbial Cell Factories\",\"volume\":\"23 1\",\"pages\":\"220\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11304630/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial Cell Factories\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s12934-024-02484-0\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Cell Factories","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12934-024-02484-0","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:生物技术为生产氧化银纳米颗粒(Ag2ONPs)等纳米材料提供了一种具有成本效益的方法。本研究调查了内生细菌生物合成 Ag2ONPs 的能力:结果:研究人员从枸杞叶中分离出一株新型内生细菌 Neobacillus niacini AUMC-B524,并利用其在细胞外合成 Ag2ONPS。采用普拉克特-伯曼设计和响应面方法对 Ag2ONPs(Bio-Ag2ONPs)的生物合成进行了优化。紫外-可见光谱分析、傅立叶变换红外光谱、透射电子显微镜、X 射线衍射、动态光散射分析、拉曼显微镜和能量色散 X 射线分析等综合表征技术证实了 Ag2ONPs 的精确组成。Bio-Ag2ONPs 对多种耐药伤口病原体有效,最低抑制浓度(1-25 µg mL-1)。值得注意的是,Bio-Ag2ONPs 在体外对人类皮肤成纤维细胞(HSF)没有细胞毒性作用,但能有效抑制人类表皮样皮肤癌(A-431)细胞的增殖,诱导细胞凋亡,并调节关键的凋亡基因,包括 Bcl-2 相关 X 蛋白(Bax)、B 细胞淋巴瘤 2(Bcl-2)、Caspase-3(Cas-3)和基因组守护者(P53):这些发现凸显了内生 N. niacini AUMC-B524 合成的 Bio-Ag2ONPs 的治疗潜力,强调了它们的抗菌功效、抗癌活性和生物相容性,为新型治疗策略铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Harnessing the power of Neobacillus niacini AUMC-B524 for silver oxide nanoparticle synthesis: optimization, characterization, and bioactivity exploration.

Background: Biotechnology provides a cost-effective way to produce nanomaterials such as silver oxide nanoparticles (Ag2ONPs), which have emerged as versatile entities with diverse applications. This study investigated the ability of endophytic bacteria to biosynthesize Ag2ONPs.

Results: A novel endophytic bacterial strain, Neobacillus niacini AUMC-B524, was isolated from Lycium shawii Roem. & Schult leaves and used to synthesize Ag2ONPS extracellularly. Plackett-Burman design and response surface approach was carried out to optimize the biosynthesis of Ag2ONPs (Bio-Ag2ONPs). Comprehensive characterization techniques, including UV-vis spectral analysis, Fourier transform infrared spectroscopy, transmission electron microscopy, X-ray diffraction, dynamic light scattering analysis, Raman microscopy, and energy dispersive X-ray analysis, confirmed the precise composition of the Ag2ONPS. Bio-Ag2ONPs were effective against multidrug-resistant wound pathogens, with minimum inhibitory concentrations (1-25 µg mL-1). Notably, Bio-Ag2ONPs demonstrated no cytotoxic effects on human skin fibroblasts (HSF) in vitro, while effectively suppressing the proliferation of human epidermoid skin carcinoma (A-431) cells, inducing apoptosis and modulating the key apoptotic genes including Bcl-2 associated X protein (Bax), B-cell lymphoma 2 (Bcl-2), Caspase-3 (Cas-3), and guardian of the genome (P53).

Conclusions: These findings highlight the therapeutic potential of Bio-Ag2ONPs synthesized by endophytic N. niacini AUMC-B524, underscoring their antibacterial efficacy, anticancer activity, and biocompatibility, paving the way for novel therapeutic strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microbial Cell Factories
Microbial Cell Factories 工程技术-生物工程与应用微生物
CiteScore
9.30
自引率
4.70%
发文量
235
审稿时长
2.3 months
期刊介绍: Microbial Cell Factories is an open access peer-reviewed journal that covers any topic related to the development, use and investigation of microbial cells as producers of recombinant proteins and natural products, or as catalyzers of biological transformations of industrial interest. Microbial Cell Factories is the world leading, primary research journal fully focusing on Applied Microbiology. The journal is divided into the following editorial sections: -Metabolic engineering -Synthetic biology -Whole-cell biocatalysis -Microbial regulations -Recombinant protein production/bioprocessing -Production of natural compounds -Systems biology of cell factories -Microbial production processes -Cell-free systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信