Wen Wang, Ying-Hui Jin, Mei Liu, Qiao He, Jia-Yue Xu, Ming-Qi Wang, Guo-Wei Li, Bo Fu, Si-Yu Yan, Kang Zou, Xin Sun
{"title":"在常规收集数据的观察性研究中填充健康状况的算法开发、验证和评估指南(DEVELOP-RCD)。","authors":"Wen Wang, Ying-Hui Jin, Mei Liu, Qiao He, Jia-Yue Xu, Ming-Qi Wang, Guo-Wei Li, Bo Fu, Si-Yu Yan, Kang Zou, Xin Sun","doi":"10.1186/s40779-024-00559-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>In recent years, there has been a growing trend in the utilization of observational studies that make use of routinely collected healthcare data (RCD). These studies rely on algorithms to identify specific health conditions (e.g. diabetes or sepsis) for statistical analyses. However, there has been substantial variation in the algorithm development and validation, leading to frequently suboptimal performance and posing a significant threat to the validity of study findings. Unfortunately, these issues are often overlooked.</p><p><strong>Methods: </strong>We systematically developed guidance for the development, validation, and evaluation of algorithms designed to identify health status (DEVELOP-RCD). Our initial efforts involved conducting both a narrative review and a systematic review of published studies on the concepts and methodological issues related to algorithm development, validation, and evaluation. Subsequently, we conducted an empirical study on an algorithm for identifying sepsis. Based on these findings, we formulated specific workflow and recommendations for algorithm development, validation, and evaluation within the guidance. Finally, the guidance underwent independent review by a panel of 20 external experts who then convened a consensus meeting to finalize it.</p><p><strong>Results: </strong>A standardized workflow for algorithm development, validation, and evaluation was established. Guided by specific health status considerations, the workflow comprises four integrated steps: assessing an existing algorithm's suitability for the target health status; developing a new algorithm using recommended methods; validating the algorithm using prescribed performance measures; and evaluating the impact of the algorithm on study results. Additionally, 13 good practice recommendations were formulated with detailed explanations. Furthermore, a practical study on sepsis identification was included to demonstrate the application of this guidance.</p><p><strong>Conclusions: </strong>The establishment of guidance is intended to aid researchers and clinicians in the appropriate and accurate development and application of algorithms for identifying health status from RCD. This guidance has the potential to enhance the credibility of findings from observational studies involving RCD.</p>","PeriodicalId":18581,"journal":{"name":"Military Medical Research","volume":"11 1","pages":"52"},"PeriodicalIF":16.7000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11302358/pdf/","citationCount":"0","resultStr":"{\"title\":\"Guidance of development, validation, and evaluation of algorithms for populating health status in observational studies of routinely collected data (DEVELOP-RCD).\",\"authors\":\"Wen Wang, Ying-Hui Jin, Mei Liu, Qiao He, Jia-Yue Xu, Ming-Qi Wang, Guo-Wei Li, Bo Fu, Si-Yu Yan, Kang Zou, Xin Sun\",\"doi\":\"10.1186/s40779-024-00559-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>In recent years, there has been a growing trend in the utilization of observational studies that make use of routinely collected healthcare data (RCD). These studies rely on algorithms to identify specific health conditions (e.g. diabetes or sepsis) for statistical analyses. However, there has been substantial variation in the algorithm development and validation, leading to frequently suboptimal performance and posing a significant threat to the validity of study findings. Unfortunately, these issues are often overlooked.</p><p><strong>Methods: </strong>We systematically developed guidance for the development, validation, and evaluation of algorithms designed to identify health status (DEVELOP-RCD). Our initial efforts involved conducting both a narrative review and a systematic review of published studies on the concepts and methodological issues related to algorithm development, validation, and evaluation. Subsequently, we conducted an empirical study on an algorithm for identifying sepsis. Based on these findings, we formulated specific workflow and recommendations for algorithm development, validation, and evaluation within the guidance. Finally, the guidance underwent independent review by a panel of 20 external experts who then convened a consensus meeting to finalize it.</p><p><strong>Results: </strong>A standardized workflow for algorithm development, validation, and evaluation was established. Guided by specific health status considerations, the workflow comprises four integrated steps: assessing an existing algorithm's suitability for the target health status; developing a new algorithm using recommended methods; validating the algorithm using prescribed performance measures; and evaluating the impact of the algorithm on study results. Additionally, 13 good practice recommendations were formulated with detailed explanations. Furthermore, a practical study on sepsis identification was included to demonstrate the application of this guidance.</p><p><strong>Conclusions: </strong>The establishment of guidance is intended to aid researchers and clinicians in the appropriate and accurate development and application of algorithms for identifying health status from RCD. This guidance has the potential to enhance the credibility of findings from observational studies involving RCD.</p>\",\"PeriodicalId\":18581,\"journal\":{\"name\":\"Military Medical Research\",\"volume\":\"11 1\",\"pages\":\"52\"},\"PeriodicalIF\":16.7000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11302358/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Military Medical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s40779-024-00559-y\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Military Medical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40779-024-00559-y","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
Guidance of development, validation, and evaluation of algorithms for populating health status in observational studies of routinely collected data (DEVELOP-RCD).
Background: In recent years, there has been a growing trend in the utilization of observational studies that make use of routinely collected healthcare data (RCD). These studies rely on algorithms to identify specific health conditions (e.g. diabetes or sepsis) for statistical analyses. However, there has been substantial variation in the algorithm development and validation, leading to frequently suboptimal performance and posing a significant threat to the validity of study findings. Unfortunately, these issues are often overlooked.
Methods: We systematically developed guidance for the development, validation, and evaluation of algorithms designed to identify health status (DEVELOP-RCD). Our initial efforts involved conducting both a narrative review and a systematic review of published studies on the concepts and methodological issues related to algorithm development, validation, and evaluation. Subsequently, we conducted an empirical study on an algorithm for identifying sepsis. Based on these findings, we formulated specific workflow and recommendations for algorithm development, validation, and evaluation within the guidance. Finally, the guidance underwent independent review by a panel of 20 external experts who then convened a consensus meeting to finalize it.
Results: A standardized workflow for algorithm development, validation, and evaluation was established. Guided by specific health status considerations, the workflow comprises four integrated steps: assessing an existing algorithm's suitability for the target health status; developing a new algorithm using recommended methods; validating the algorithm using prescribed performance measures; and evaluating the impact of the algorithm on study results. Additionally, 13 good practice recommendations were formulated with detailed explanations. Furthermore, a practical study on sepsis identification was included to demonstrate the application of this guidance.
Conclusions: The establishment of guidance is intended to aid researchers and clinicians in the appropriate and accurate development and application of algorithms for identifying health status from RCD. This guidance has the potential to enhance the credibility of findings from observational studies involving RCD.
期刊介绍:
Military Medical Research is an open-access, peer-reviewed journal that aims to share the most up-to-date evidence and innovative discoveries in a wide range of fields, including basic and clinical sciences, translational research, precision medicine, emerging interdisciplinary subjects, and advanced technologies. Our primary focus is on modern military medicine; however, we also encourage submissions from other related areas. This includes, but is not limited to, basic medical research with the potential for translation into practice, as well as clinical research that could impact medical care both in times of warfare and during peacetime military operations.