近场流体动力相互作用决定了集体跳动纤毛的行波方向。

IF 3.7 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Journal of The Royal Society Interface Pub Date : 2024-08-01 Epub Date: 2024-08-07 DOI:10.1098/rsif.2024.0221
Ziqi Cheng, Andrej Vilfan, Yanting Wang, Ramin Golestanian, Fanlong Meng
{"title":"近场流体动力相互作用决定了集体跳动纤毛的行波方向。","authors":"Ziqi Cheng, Andrej Vilfan, Yanting Wang, Ramin Golestanian, Fanlong Meng","doi":"10.1098/rsif.2024.0221","DOIUrl":null,"url":null,"abstract":"<p><p>Cilia can beat collectively in the form of a metachronal wave, and we investigate how near-field hydrodynamic interactions between cilia can influence the collective response of the beating cilia. Based on the theoretical framework developed in the work of Meng <i>et al</i>. (Meng <i>et al</i>. 2021 <i>Proc. Natl Acad. Sci. USA</i> <b>118</b>, e2102828118), we find that the first harmonic mode in the driving force acting on each individual cilium can determine the direction of the metachronal wave after considering the finite size of the beating trajectories, which is confirmed by our agent-based numerical simulations. The stable wave patterns, e.g. the travelling direction, can be controlled by the driving forces acting on the cilia, based on which one can change the flow field generated by the cilia. This work can not only help to understand the role of the hydrodynamic interactions in the collective behaviours of cilia, but can also guide future designs of artificial cilia beating in the desired dynamic mode.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"21 217","pages":"20240221"},"PeriodicalIF":3.7000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11303030/pdf/","citationCount":"0","resultStr":"{\"title\":\"Near-field hydrodynamic interactions determine travelling wave directions of collectively beating cilia.\",\"authors\":\"Ziqi Cheng, Andrej Vilfan, Yanting Wang, Ramin Golestanian, Fanlong Meng\",\"doi\":\"10.1098/rsif.2024.0221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cilia can beat collectively in the form of a metachronal wave, and we investigate how near-field hydrodynamic interactions between cilia can influence the collective response of the beating cilia. Based on the theoretical framework developed in the work of Meng <i>et al</i>. (Meng <i>et al</i>. 2021 <i>Proc. Natl Acad. Sci. USA</i> <b>118</b>, e2102828118), we find that the first harmonic mode in the driving force acting on each individual cilium can determine the direction of the metachronal wave after considering the finite size of the beating trajectories, which is confirmed by our agent-based numerical simulations. The stable wave patterns, e.g. the travelling direction, can be controlled by the driving forces acting on the cilia, based on which one can change the flow field generated by the cilia. This work can not only help to understand the role of the hydrodynamic interactions in the collective behaviours of cilia, but can also guide future designs of artificial cilia beating in the desired dynamic mode.</p>\",\"PeriodicalId\":17488,\"journal\":{\"name\":\"Journal of The Royal Society Interface\",\"volume\":\"21 217\",\"pages\":\"20240221\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11303030/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Royal Society Interface\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsif.2024.0221\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Royal Society Interface","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsif.2024.0221","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

纤毛可以以元波的形式集体跳动,我们研究了纤毛之间的近场流体力学相互作用如何影响跳动纤毛的集体响应。基于 Meng 等人的研究(Meng 等人,2021 年美国国家科学院学报,118, e2102828118)所建立的理论框架,我们发现在考虑了跳动轨迹的有限大小后,作用于每个纤毛的驱动力中的第一次谐波模式可以决定元线性波的方向,这一点在我们基于代理的数值模拟中得到了证实。纤毛上的驱动力可以控制稳定的波形(如行进方向),从而改变纤毛产生的流场。这项工作不仅有助于理解流体动力相互作用在纤毛集体行为中的作用,还能指导未来以所需动态模式跳动的人工纤毛的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Near-field hydrodynamic interactions determine travelling wave directions of collectively beating cilia.

Cilia can beat collectively in the form of a metachronal wave, and we investigate how near-field hydrodynamic interactions between cilia can influence the collective response of the beating cilia. Based on the theoretical framework developed in the work of Meng et al. (Meng et al. 2021 Proc. Natl Acad. Sci. USA 118, e2102828118), we find that the first harmonic mode in the driving force acting on each individual cilium can determine the direction of the metachronal wave after considering the finite size of the beating trajectories, which is confirmed by our agent-based numerical simulations. The stable wave patterns, e.g. the travelling direction, can be controlled by the driving forces acting on the cilia, based on which one can change the flow field generated by the cilia. This work can not only help to understand the role of the hydrodynamic interactions in the collective behaviours of cilia, but can also guide future designs of artificial cilia beating in the desired dynamic mode.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of The Royal Society Interface
Journal of The Royal Society Interface 综合性期刊-综合性期刊
CiteScore
7.10
自引率
2.60%
发文量
234
审稿时长
2.5 months
期刊介绍: J. R. Soc. Interface welcomes articles of high quality research at the interface of the physical and life sciences. It provides a high-quality forum to publish rapidly and interact across this boundary in two main ways: J. R. Soc. Interface publishes research applying chemistry, engineering, materials science, mathematics and physics to the biological and medical sciences; it also highlights discoveries in the life sciences of relevance to the physical sciences. Both sides of the interface are considered equally and it is one of the only journals to cover this exciting new territory. J. R. Soc. Interface welcomes contributions on a diverse range of topics, including but not limited to; biocomplexity, bioengineering, bioinformatics, biomaterials, biomechanics, bionanoscience, biophysics, chemical biology, computer science (as applied to the life sciences), medical physics, synthetic biology, systems biology, theoretical biology and tissue engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信